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I. ABOUT THIS GUIDE

The coupled cluster method (CCM) is a well-known and powerful method of quantum many-
body theory [1-9]. It has been extensively utilised in order to predict the zero-temperature
properties of lattice quantum spin systems [10-31]. This document outlines how to obtain,
set up, and use a high-order CCM code for spin systems and related problems on a general

“crystallographic” lattice.

This section gives an overview of the CCM and explains some of the key points of the CCM
formalism. It also deals with how to download the code from the internet and how to set
up the codes so that they will run on your computer for the UNIX operating system. In
particular, the graphical user interface uses TCL/TK and so the “windowing shell” wish must
be installed on your computer. The CCM codes are written in ANSI C and are compiled using

an appropriate makefile, also provided with the code.

The rest of the document explains how to use the GUI to define and run specific problems
and how to plot the results of these simulations using a tailor-made graphics utility. Advanced
topics which require the user to edit the CCM C code and recompile (such as parallel
implementations of the code, user-defined constraints on “fundamental” CCM clusters,
and expectation values other than the lattice magnetisation) are also dealt with. The final

‘trouble-shooting’ section deals with typical errors and possible solutions to them.

A Overview of the CCM

The CCM is a well known technique of many-body theory in which the many-body ket-state
wave function is written as the exponential of a ket-state correlation operator which contains

purely creation operators which acts on some model or reference state. The many-body
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Schrodinger equation may be solved and ground- and excited-state properties determined. A
characteristic of the method is that the bra and ket states are parametrised independently,
and so no strict variational upper bound on the ground-state energy is afforded. However,
the Goldstone linked cluster theorem is satisfied from the outset of any calculation, and
the Hellmann-Feynman theorem is also satisfied. Note that a full explanation of the CCM
formalism is given in Appendix A or see for example, R.F. Bishop, Theor. Chim. Acta 80, 95
(1991). However, some of the key concepts are now introduced in order to give an idea of

how one goes about implementing the CCM.

1 The Model State and the Ground Ket State

The reference or model state |®) is a state with respect to which the quantum correlations

are defined. As mentioned above, the ground-state wavefunction is defined as,

) = &5 |®) (1)

where S is the ket-state correlation operator define by

S=>Y 8Cf (2)
I
and where the {C}} is a set of multi-spin creation operators and {S;} are their corresponding

CCM correlation coefficients.

For the systems under consideration here we use a Néel-type model state, namely, one in
which the classical ground state is used as the model state and one is able to perform a
unitary transformation of the spin coordinates such that the model state now consists of spin
pointing purely in the downwards z-direction. The creation operators C; are thus products

of spin-raising operators only.
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The user must do this by hand before they start the CCM and an example of how one
performs this transformation for the XXZ model on the linear chain and for the triangular

lattice is given in the “Tutorials’ below.

Future developments of the CCM will include: the use of “non-classical” model states (such
as valence-bond solid model states); crystallographic SUB2; estimation of excitation spectra
using high-order CCM techniques; extension of high-order CCM to lattice boson and fermion

models; and, the application of the CCM to non-zero temperature.

2 Approximation Schemes

We note that the solution of the CCM problem in which all possible correlations are retained
in S (which thus provides an exact solution) is often difficult, if not impossible, to achieve and

so an approximation must be made. The three main approximation schemes (in S) are given by:

1. The SUBn scheme, in which all correlations involving only n or fewer spins are retained,

but no further restriction is made concerning their spatial separation on the lattice.

2. The SUBn-m sub-approximation, in which all SUBn correlations spanning a range of

no more than m contiguous lattice sites are retained.

3. The localised LSUBm scheme, in which all multi-spin correlations over distinct locales

on the lattice defined by m or fewer contiguous sites are retained.

We note that the maximum number of spin-flips at any particular site with respect to our
“Néel model state” (i.e., all spin pointing downwards) is given by 2 x s.
Furthermore, we note that the task of determining all of the “fundamental” which lie in the

physically relevant spin subspace and are independent under the symmetries of both the lattice
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and Hamiltonian may be determined computationally for large values of m and n. Appendix

B explains how this may be achieved.

3 CCM Equations and Expectation Values

The time-independent Schrodinger equation tells use that

H|U) = E,|¥) = He’|®) = E, e”|P)

and thus

E,|®) = e "He®|®)

The application of (®| to this equation then leads to:

E, = (®le " He’|D) .

(3)

(4)

(5)

Note F, may be found analytically, although the high-order CCM program does this automat-

ically and so the user need not do this “by hand.” We now need to determine all of the CCM

correlation coefficients, within a given approximation, in order to obtain a value, for example,

for E,. We do this by applying (®|C; to the equation for E,;|®) above where C} is formed

purely from spin-lowering operators in the I*® “fundamental” clusters in our approximation.

Thus our ket-state equations are given by:

(®|Cre "HeS|®) =0 .

(6)

This is determined and solved computationally here and Appendix B explains how this is

achieved. Appendix B also explains how one may determine the bra state once the ket
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Define Fundamental
CCM Clusters

Obtain Ground-State Obtain Excited—State
CCM Equations CCM Equations

Solve Ground-State Solve Excited—State
CCM Equations CCM Equations

Ground- and Excited—
State Expectation Values

FIG. 1: The CCM algorithm.

state has been determined and one is therefore able to also obtain other expectation values also.

We note that the results for the ground-state energy, the amount of lattice or sublattice
magnetisation, low-lying excitation energies, positions of quantum phase transition point
(and in some cases the order of the phase transition), and (more recently) the spin-stiffness
have previously been found to be among some of the best results as yet determined for many
different lattice quantum spin models. The CCM results for the ground and excited states and
for the order parameters of these models allow us to make strong statements regarding the
nature of the quantum ordering and the type and position of phase transitions with respect

to the phase diagram.
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4 The CCM Algorithm

The CCM algorithm is split into distinct parts, as shown in the Fig. 1. Firstly, we must
determine the ‘fundamental’ CCM clusters for a given approximation. These are fundamental
because they are not equivalent under the symmetries of the lattice and have the correct spin
symmetry (e.g., s5 = Y_; s = 0). The CCM equations for each of these fundamental clusters
is then determined (for the ground-state and/or excited states) and then the resulting coupled
non-linear polynomial ground-state equations are solved. The excited-state equations form an
eigenvalue problem [26] which may only be solved once the ground-state equations have been

solved, although note that this implementation does not include excited states at this time.

A full account of how the CCM fundamental clusters are determine and how the CCM
equations are obtained for the high-order CCM approach is given in Appendix B. All further
details of the computational algorithms used in high-order CCM approach is thus also deferred

until Appendix B.

B Definition of Terms

A number of ideas must now be introduced which are crucial to an implementation of the

CCM using this code.

1 The Hamiltonian and Model State

To re-iterate: The model state in this implementation is made up of spins which all point
in the downwards z-direction. The user must cast their problem for a given Hamiltonian
with a suitable choice of untransformed model state into one in which all of the spins points

downwards via a simple unitary transformation of the spin coordinates (perhaps on given

10
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sublattices).

The Tutorials shows how this may be done although all of the References [10-31] also give

details of how one achieves this for a variety of cases.

2 The Script File

A crucial point is that this implementation uses CCM script files which are interpreted by
the CCM executable, in order to determine and solve the CCM equations, and which fully
defines the particular physical problem. The graphical user interface in large party deals
with the manipulation of these script files. Note however that a particular CCM run will
probably have a different name to the CCM script file name. Indeed, this CCM ‘simulation’
or ‘run’ name is actually defined within a given CCM script file. Thus, in order to change the
approximation level and all output files associated with this approximation one can change

a few parameters within the script file without having to write a whole new script from scratch.

3 The Simulation Name

A particular simulation (e.g., for a given level of approximation) is denoted by a file name
which does need to be (and probably shouldn’t be) the same as the CCM script name. In
fact, the simulation or run name is defined within the CCM script file. Different simulations

as thus easily run by minimal changes to the CCM script.

4  The Hamiltonian

Note that we split the Hamiltonian into two parts, H; and H, and that the first such part,

H, is multiplied by a factor x which may be varied from some predefined starting value to a

11
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finishing value in constant increments. The factor for the second such part is unity.

H = .’L'H1 + H2 (7)

Thus, we choose an initial value for z for which we know that our initial values for
the CCM correlation coefficients (all initially taken to be zero!) will converge using the
Newton-Raphson technique or direct iteration of CCM equations. Often, we take the
second such part H; to be one for which the model state is an exact eigenstate such
that all of the CCM correlation coefficients must be zero if we set out starting value for

x is also zero. More of this is said for the XXZ and triangular models etc. in the tutorials below.

Note that each part in H may have many different terms within it and indeed each “term”
may have its own unique coefficient such that, for example, H; might be given by something
like Hy = —0.5 (s s + sis71) +0.125 3, 35(s57 sty + s siy1)- In this case there are

four such terms and two have a factor of —0.5 and two have a factor of +0.125.

Thus, the ideas of splitting up the Hamiltonian in the way serves only to track our solution from
some known point (often for which all of the CCM correlation coefficients are zero anyway)
into the region of interest. Often the solution to the CCM equations will “break down” at
some point (often evinced, for example, by the second derivative of the ground-state energy
and the lattice magnetisation diverging) as one increases the parameter z. For the sake of
simplicity, only two such parts are allowed here although the present implementation of the C

code allows arbitrary numbers of such “parts”.

5 Crystallographic Point- and Space Groups

The CCM code needs to know about the nature of the Hamiltonian and the underlying lattice

in order to work. The information about the underlying lattice is used in order to define and

12
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identify multi-spin clusters which are formed from products of spin operators (which of course
act on the model state). The information about the Hamiltonian is used in order to obtain

the CCM equations and to obtain expectation values.

Thus, it is crucial to be able to define the primitive unit cell of an arbitrary lattice as well as
the underlying Bravais lattice. The CCM code and GUI allows the user to input the relevant
crystallographic lattice with corresponding symmorphic or non-symmorphic point-group

symmetries.

The lattice nearest-neighbours, which define all of the points on the lattice, are thus defined
with respect to each site within the unit cell respectively as a translation along the Bravais

lattice vectors to a given site within the new unit cell.

Similarly, terms within the Hamiltonian “parts” are defined in a similar manner. Each
site within the unit cell connects to Hamiltonian neighbours (i.e., other sites for a given
interaction) by multiples of the Bravais lattice vector and a flag saying which site is to be

identified in the new unit cell.

C Installation of the CCM Code

1 Downloading the Code

The full codes for the alpha version of the TCL/TK GUI and the high-order CCCM code can

be obtained from:

http://www.phy.umist.ac.uk/~mccmmdf/Programs/beta CCCM/ccm.tar.gz

13
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Enter this as the “location” in your web browser and save to an appropriate directory which
is empty. The choice of this directory is important because it becomes the root directory for

the CCM suite of programs.

Now type in:

tar xvfz ccm.tar.gz

or (if this doesn't work on your machine)
gunzip -c ccm.tar.gz | tar -xvf -
or alternatively:

gunzip ccm.tar.gz and then tar xvf ccm.tar

You should now see five new directories, namely,

./include/ This directory contains all header files.

./documentation/ This directory contains all relevant documentation, including this user

guide.

./Data/ The directory stores of the input and output data files.

./bin/ This directory stores the C code of the high-order CCCM program.

./GUI/ This directory stores the TCL/TK code of the GUI. Always run the ccm graphical

user interface from this directory!

2 Compiling the C Code

The C code in directory ./bin/ from the root directory is compiled by typing in make. The

Makefile uses the Gnu ANSI C compiler, namely, gcc. If you do not have this then change

14
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gcc in the Makefile for cc or your usual C compiler. If errors in compilation still occur then
contact your system administrator to check that all libraries (the code uses the stdio, string,
and math etc. libraries) are correctly installed. If the compilation procedure is successful you

should now see the file ccm.x in this directory.

3 Configuring the User Interface
In order configure the GUI now change directory to ./GUI/ from the root directory. Now type
in:

which wish

If the response is no wish in ... then contact your system administrator in order to install
wish. If the response is something like /usr/bin/wish then check that this is specified in the

first lines of the programs plot.tcl, ccm, and edit.tcl, namely:

#!/usr/bin/wish -f

If the path for wish at the start of these scripts is different to that supplied by the “which
wish” command then change it in each file accordingly. Now type in ccm at the command

line and the main CCM panel should appear.

You are now ready to use the Crystallographic Coupled Cluster Method! Always run the

ccm graphical user interface from the ./GUI/ directory!
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D The Output File

The output file is stored in a file with . output identifier in the directory specified in the CCM

script file. The format of the output is the following (enumerated by column number):

—t

. Value of z, the control parameter.

Ground-state energy per spin, E,/N.

Magnetisation (in transformed, ‘rotated’, local spin coordinates) over ALL lattice sites.
Second derivative of E,/N with respect to x determined computationally.

The value of the first ket-state correlations coefficient.

Number of iterations for the ket-state.

Number of iterations for the bra-state (for direct iteration only — it is set to zero for

Newton-Raphson...)

The next Ny columns contain the sublattice magetisation evaluated on Ny ¢ individual
sublattices which correspond to those Ny sites in the unit cell. If the number of
sites in the unit cell is one (Nyc = 1) then this is, of course, equal to the sublattice

magnetisation evaluated on all sites and so this column(s) is omitted.

16
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Il. TUTORIALS
A The Transverse Ising Model for the Linear Chain

The Hamiltonian for the transverse Ising model is given by

H=-4) sisi—22Y s7 =-4> sisi—z) (sf+s) , (8)
() i (4.4) i

where the usual Pauli spin o-operators are replaced by fully equivalent spin operators for

s =1/2 and (i, j) indicates that each of the N nearest-neighbour bonds on the linear chain

is counted once only. We note that the classical ground-state of the Ising model for negative

factor outside the sum is one in which all spins point in the same direction along the z-axis

and we use this state directly without having to perform any rotations of the local spin

coordinates. Thus we may go ahead and use the CCM GUI.

Type in ccm isingLinearChain.ccm at the command line in the ./GUI/ subdirectory. The
main CCM panel should now appear and the script should read as isingLinearChain.ccm.
Click on Edit Script so that this panel now appears and again the script field should say
isinglinearChain.ccm. Always run the ccm graphical user interface from the ./GUI/

directory!

The path should indicate the root directory for the CCM suite and the name of the simulation
or run should be indicated in the field after Run Name: as ising_1D_sub8-8. Change this
field so that it now reads ising_1D_sub2-2. Set the output level to be 1 and ensure that
the spatial dimension and spin quantum number are correct, namely, 1 and 0.5 respectively,

in the fields marked Dimension (1-3) and Spin (0.5,1.0,...).

Now change the values of n and m in the fields marked SUBn-m n= and SUBn-m m= to 2

17
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and 2, respectively. Ensure that the blue pull-down menu marked Restrict Clusters is
set to No Restriction. Ensure that the minimum and maximum values for x are 0.0 and
2.0 respectively and that Increment x is a positive small number. Now ensure that the

minimum and maximum values for y are again -2.0 and -1.0 respectively.

Check that the Bravais lattice vectors are given by

@ = (1.0,0.0,0.0) ;5 = (0.0,1.0,0.0) and &= (0.0,0.0,1.0) , (9)

that the # of Sites in Unit Cell in blue is set to one, and that the position of this site
in the unit cell is at x=0.0, y=0.0, z=0.0 and that the spin quantum number of this site

is set at s=0.5.

Define the lattice nearest-neighbours to the single site in the unit cell in the line directly
beneath the one with # of Sites in Unit Cell in blue. Thus, on the left of this new line
you should see UC#1: #NNs which should also be in blue. Make sure that the pull-down is
set to the option #nn=2. The fields after this blue pull-down menu button marked UC#1:

#NNs define the lattice neighbours to the single site in the unit cell.

The first such neighbour is denoted by 1 and the you should see that the four fields
following it holds the numbers 1 0 0 1. This means that its first nearest neighbour is
located at in the unit cell at 1 xd@ + 0 xb + 0 x& Bravais lattice vectors from the cur-

rent unit cell and that it connects to the 1-st site (of a total of one in this case!) in this unit cell.

The second such neighbour is denoted by 2 and the you should see that the four fields
following it holds the numbers -1 0 0 1. This means that its first nearest neighbour is
located at in the unit cell at -1 x&@ + 0 xb + 0 x& Bravais lattice vectors from the current

unit cell and that it connects to the 1-st site (again of a total of one) in this unit cell.

18
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We now set the terms in the Hamiltonian by selecting the Site in UC, Term in
Hamiltonian, and H_1 or H_27 appropriately. Firstly, ensure that H_1 is selected in the
blue pull-down menu H_1 or H 27, that the Site in UC is set to #UC=1, and that the
Term in Hamiltonian is set to s*. Click on Refresh or pressing (Return) anyway on the
panel in order to “refresh” it. The entry in the fields Coeff should read -1, as defined by
the Hamiltonian of Eq. (8). Note that this is a single-site term as so doesn't connect to any

other lattices sites and so the pull-down menu #Ham. Neighs. should be set to zero.

By contrast, when we select H.2 and the Term in Hamiltonian is set to s*s* and again
“refresh” the panel by Refresh or by pressing (Return) we see that there is one “Hamiltonian
Neighbour.” This indicates that there is a term in the Hamiltonian for which the first site (of
a total one anyway) in the unit cell connects to the first site s in a unit cell which is 1 xa
(Bravais) vectors away from it. The coefficient must be given by -4.0 for the Hamiltonian

of Eq. (8).

Finally, we set the lattice symmetries by choosing the Total Number of Symmetries to be
2 and then selecting each symmetry in turn. Check both symmetries by typing into the This
Symmetry Operation field firstly 1 and then ‘refresh’ the panel by clicking on Refresh
or pressing (Return) anywhere in the panel. The “rotation” matrix should be the identity
matrix and the non-primitive lattice translation should be T = 0.0 0.0 0.0. This is simply
the identity symmetry operation. Now type 2 into the This Symmetry Operation field
firstly 1 and then ‘refresh’ the panel by clicking on Refresh or pressing (Return) anywhere
in the panel. The rotation matrix should now have an element of -1.0 in the top left-hand
element of the rotation matrix. This is simply the symmetry operation which corresponds to

a reflection about the point x = 0.

Now click on the button marked Save and exit by pressing Exit if you want to. Note that

19
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this GUI does not automatically save on exit! If you want to edit a different (pre-existing
only!) CCM script file at any time then enter its name into the script fields at the top of
the panel and click on Load. To create a new script then change the relevant field in the

main CCM panel and click on Edit Script.

To run a simulation now select Define, Obtain, and Solve! in the pull-down menu in
blue menu marked Options for Run CCM Script and then click on the Run Script button.
An terminal window now appears and the particular (SUB2-2 here!) run begins. The CCM
equations are determined and these equations are solved over the range defined in the script
file. Once the CCM program has finished successfully the user will be asked to press a key
(while this terminal window) is selected in order to destroy the terminal window. The results

may be viewed by now clicking on View Results.

20
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B The XXZ Model for the Simple Cubic Lattice

The Hamiltonian for the XXZ Model is given by

H =Y {sis] +s{s] + As]s; (10)
(i,)

where the sum on (i,j) runs over each of the 3N nearest-neighbour bonds on the cubic

lattice, such that each bond is counted once only.

In this case we choose the Néel state to be the model state. The Néel state contains one
sublattice populated entirely by spins which points upwards along the z-axis and another
populated entirely by spins which points downwards along the z-axis. Each nearest-neighbour
to a given sublattice site is a site on the other sublattice. In order to cast our problem into
one which we may treat using the CCM code we now perform a rotation of 180° about the

y-axis for the spins on the sublattice which contain only the ‘up-pointing’ spins. That is:

s¥ = —s" ; ¥ sY s —5F (11)
The model state now appears to only contain spins which all point in the same direction along

the z-axis. The Hamiltonian is now given by

1 _
H=— <Z){§(82—8;_ + 5;°8; )+ Asfsj} (12)
.
where s* = 5% +is¥. We may now use the the CCM program.

Type in ccm xxzCubic.ccm at the command line in the ./GUI/ subdirectory. The main
CCM panel should now appear and the script should read as xxzCubic.ccm. Click on Edit

Script so that this panel now appears and again the script field should say xxzCubic.ccm.

21
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The path should indicate the root directory for the CCM suite and the name of the simulation
or run should be indicated in the field after Run Name: as ccm cubic_sub2-2. Set the
output level to be 1 and ensure that the spatial dimension and spin quantum number are
correct, namely, 3 and 0.5 respectively, in the fields marked Dimension (1-3) and Spin

(0.5,1.0,...).

Now change the values of n and m in the fields marked SUBn-m n= and SUBn-m m= to 2
and 2, respectively. Ensure that the blue pull-down menu marked Restrict Clusters is
set to No Restriction. Ensure that the minimum and maximum values for x are 0.0 and
10.0 respectively and that Increment x is a negative small number. Now ensure that the

minimum and maximum values for y are again -30.0 and 0.0 respectively.

Check that the Bravais lattice vectors are given by

@ = (1.0,0.0,0.0) ;b = (0.0,1.0,0.0) and &= (0.0,0.0,1.0) , (13)

that the # of Sites in Unit Cell in blue is set to one, and that the position of this site
in the unit cell is at x=0.0, y=0.0, z=0.0 and that the spin quantum number of this site

is set at s=0.5.

Define the lattice nearest-neighbours to the single site in the unit cell in the line directly
beneath the one with # of Sites in Unit Cell in blue. Thus, on the left of this new line
you should see UC#1: #NNs which should also be in blue. Make sure that the pull-down is
set to the option #nn=6. The fields after this blue pull-down menu button marked UC#1:

#NNs define the lattice neighbours to the single site in the unit cell.

The first such neighbour is denoted by 1 and the you should see that the four fields following

it holds the numbers 1 0 0 1. This means that its first nearest neighbour is located at in

22



User’s Guide: Crystallographic Coupled Cluster Method

the unit cell at 1 x@ + 0 xb + 0 x Bravais lattice vectors from the current unit cell and
that it connects to the 1-st site (of a total of one in this case!) in this unit cell. The second
such neighbour is denoted by 2 and the you should see that the four fields following it holds
the numbers -1 0 0 1. This means that its first nearest neighbour is located at in the unit
cellat -1 x@ + 0 xb + 0 x¢ Bravais lattice vectors from the current unit cell and that it
connects to the 1-st site (again of a total of one) in this unit cell. The third such neighbour is
denoted by 3 and you be able to should see that the four fields following it holds the numbers
0 1 0 1. This means that its first nearest neighbour is located at in the unit cell at 0 xda
+ 1 xb + 0 x¢ Bravais lattice vectors from the current unit cell and that it connects to
the 1-st site (again of a total of one) in this unit cell. The rest of the neighbours follow on

accordingly.

We now set the terms in the Hamiltonian by selecting the Site in UC, Term in
Hamiltonian, and H.1 or H_27 appropriately. Firstly, ensure that H_1 is selected in the blue
pull-down menu H_1 or H_27, that the Site in UC is set to #UC=1, and that the Term in
Hamiltonian is set to s*s®. Click on Refresh or pressing (Return) anyway on the panel in
order to “refresh” it. The entry in the all of the fields Coeffs should read -1 for each ‘Hamil-
tonian Neighbour, as defined by the Hamiltonian of Eq. (12). Check that this term connects

to 6 “Hamiltonian neighbours” which are the nearest-neighbours to site 1 (of 1 in the unit cell).

When we select H.2 and the Term in Hamiltonian is set to s™s™ or s~s~ and again
“refresh” the panel by Refresh or by pressing (Return) we see that there are again 6
“Hamiltonian neighbours.” The coefficients in the relevant fields for each “Hamiltonian

Neighbour” must be given by -0.5 for the Hamiltonian of Eq. (12).

Finally, we set the lattice symmetries by choosing the Total Number of Symmetries to

be 48 and then selecting each symmetry in turn. The CCM GUI should read in all of the
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symmetries correctly and these all correspond to the 48 different reflections and rotations of

the point-group for the simple cubic lattice.

Now click on the button marked Save and exit by pressing Exit if you want to. Note that
this GUI does not automatically save on exit! If you want to edit a different (pre-existing
only!) CCM script file at any time then enter its name into the script fields at the top of
the panel and click on Load. To create a new script then change the relevant field in the

main CCM panel and click on Edit Script.

1 Advanced Topic: Setting the User Defined “Restriction” for CCM clusters (Example for cubic

XXZ)

We note that the ground-state of this model is known to lie in the s% = 3, s? = (0 subspace.
We start from a model for which this is true and so all CCM correlation coefficients must
have an equal number of ‘up’ spin flips as ‘down’ spin flips with respect to the original
untransformed model state. We note that after the rotation of the local spin axes all of the
spins points downwards and, importantly, all spin operators are now spin-raising operators

(these all mutually commute — as required by the CCM).

We restrict the clusters by choosing only those clusters which preserve s% = 37, s? = 0.
However, we only have one site per unit cell and we have effectively “thrown away” our
two sublattice structure by the transformation of the local spin axes (although it's still
actually there, but hidden.) Thus, we must choose which lattice we are on by looking
at the values of z-, y-, and z-components of each of the sites in the fundamental CCM
clusters. We simply check if the z + y + z is odd or even in order to do this for the
implementation for the cubic XXZ model above. Thus, we may sum the +1/2 or —1/2 con-

tributions of each site in every clusters to s%. in order to determine if it is a ‘valid’ cluster or not.

24



User’s Guide: Crystallographic Coupled Cluster Method

This is therefore a highly implementation-driven constraint and thus it may vary (e.g., doubling
the size of the Bravais lattice vectors) drastically. There is therefore a user-defined option
for the Restrict Clusters in the Edit Script panel which allows the user to define the
own restriction. This causes the option marked USER DEFINED OPTION!! in the function:
int subsetClusters(int *descriptor)

in the program define.C. Now take a look at the code in this function using emacs or vi (or
whatever text editor you prefer). The option for the XXZ model for the cubic lattice is already

set up.

if (restrictionClusters==3) {

// USER DEFINED OPTIQON!!

// ADVANCED: USER MUST ALTER CODE IN THIS CASE!!!

// EXAMPLE: XXZ model or Heisenberg linear-chain, square or cubic

// lattices arbitrary ‘s’ though.

// EXAMPLE: Ca V_4 0_9 Neel model state. Take out comment markers

// on ‘x+=0.5;’ and ‘y+=0.5;’ and recompile
y p

if (flag==1) {
stz=0.0;
for(i=1;i<=length;i++) {
findCartesiansFromGeneralisedPosition(x,y,z,config[il]);
// x+=0.5;

// y+=0.5;
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if (((int) ((x+y+2)/2.0)) == ((int) ((x+y+z+1.0)/2.0)))

stz++;
else
stz——;

}
if (fabs(stz)>0.1)

flag=0;

This routine assumes that the Bravais lattice vectors are simply unit vectors along the Cartesian
axes and calculates s% for each cluster by looping over each site for a given cluster (indicated
by the index i) and determining the coordinates of the site (stored in z, y, and 2). If the sum
of the components is odd then the variable stz is decreased by one and if it's even then stz is
decreased by one. Once all sites have been considered, if the final value of stz doesn't equal
zero then the cluster is rejected and a value of flag equal to zero is returned to the main part

of the define clusters program.
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Unit Cell
3 4

1 2

Bravais Lattice VVectors

a=(2,1)

b=(1,-2)

Nearest—Neighbour Bonds (J,)

-------- Next—Nearest—Neighbour Bonds (J,)

FIG. 2: The CaV,0Og4 Lattice.

C The Ji—J; Antiferromagnet for the CaV,0q Lattice

By contrast to the previous examples, we must use a unit cell of four sites for the J;—Js

Antiferromagnet for the CaV,QOy Lattice. The lattice is shown in Fig. 2.

H:J1Z i'gj-i-JQZ 5i - 5k (14)
(4,9) ((3,k))

where the sum on (i, j) runs over each of the 3N/2 nearest-neighbour bonds on the CAVO
lattice, such that each bond is counted once only, and ({3, k)) runs over each of the 3N/2
next-nearest-neighbour bonds on the CAVO lattice, again such that each bond is counted

once only. Note again that s = 1/2 and that 7" = 0.
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We may furthermore choose two model states in order to treat this model in different regimes.

1 The Neel Model State for the CAVO Lattice

The first is the Neel state in which we divide the lattice in to (nearest-) neighbouring sublattices
populated with ‘up’ and ‘down’ spins, respectively. We again rotate the local spin coordinates
of the ‘up’ spins by 180° about the y-axis (using the transformation of Eq. (11)) such that

all spins now appear to lie in the downwards z-direction and the Hamiltonian is given by

1
H=-J Z{§{S:FS;L + 5757 } + 5755
(i,9)
1

+ Jo (;}){2{sjsj + si’s;’} +sisi} . (15)
ik

Type in ccm cavo_neel.ccm at the command line in the ./GUI/ subdirectory. The main
CCM panel should now appear and click on Edit Script. Check that the spatial dimension
and spin quantum number are correct, namely, 2 and 0.5 respectively. Always run the ccm
graphical user interface from the ./GUI/ directory!

In contrast to the previous examples, you should find that that the Bravais lattice vectors are

given by

@ =(2.0,1.0,0.0) ;b = (1.0,—2.0,0.0) and &= (0.0,0.0,1.0) , (16)

and that the # of Sites in Unit Cell in blue is set to four. The position of these sites

in the unit cell is given by

x=-0.5, y=-0.5, z=0.0
x=0.5, y=-0.5, z=0.0
x=-0.5, y=0.5, z=0.0

x=0.5, y=0.5, z=0.0
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The lattice nearest-neighbours of the sites in the unit cell should be:

site 1: translation=(0,0,0) to site in new unit cell=2
translation=(-1,0,0) to site in new unit cell=4
translation=(0,0,0) +to site in new unit cell=3
site 2: tramnslation=(0,0,0) +to site in new unit cell=1
translation=(0,0,0) to site in new unit cell=4
translation=(0,1,0) to site in new unit cell=3
site 3: translation=(0,0,0) to site in new unit cell=1
translation=(0,0,0) to site in new unit cell=4
translation=(0,-1,0) to site in new unit cell=2
site 4: translation=(0,0,0) to site in new unit cell=2
translation=(0,0,0) to site in new unit cell=3

translation=(1,0,0) to site in new unit cell=1

where the “translation” denoted above refers to translations from the unit cell at the origin
to another unit cell in terms of the Bravais lattice vectors.

It is left as an exercise to the reader to check that the Hamiltonian is correctly defined for
both the next-nearest-neighbour (H_2) and the nearest-neighbour terms (H_1). (Note that J,
is the parameter that we want to vary and that we also want to set J; = 1.0.) This follows
on in exactly the same manner as for the previous examples, although we now have four sites
in the unit cell. Defining the “Hamiltonian neighbours” for the Hamiltonian occurs in exactly

the same way as for the lattice neighbours were above.

We set the lattice symmetries by choosing the Total Number of Symmetries to be 4
and then selecting each symmetry in turn. We note that there are four allowed point-group
symmetries for this lattice (with this particular set-up for the unit cell). These are, namely,
rotations of 0°, 90°, 180°, and 270° about the origin. The interested reader is left to check

that these are correct in the supplied script.
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Note again that the ground state lies in the s = 0 subspace. We can again check to see if
this is true for each cluster by looking at its position. However, we must add on a factor of
0.5 to the lattice positions for the CAVO lattice here with the Néel state because lattice sites
now lie at points for x, i, and z which are half-integers and not integers as for the XXZ model.
Remove the comments (marked by //) from the following lines in int subsetClusters(int

*descriptor).

// x+=0.5;

// y+=0.5;

We finally note that we start from a point for J, which is given by J, = 0.0. We note that the
initial ‘guess’ for the CCM coefficients (namely, that they are all zero) could be a bad one for
higher orders of approximation. Thus, Newton-Raphson might fail in this case. Use a negative
initial value for J> for which our initial ‘guess’ is a better starting point. One can also change
the initial values for the CCM coefficients so that they lie with the radius of convergence (e.g.,
use the solution of a lower-order of approximation for those clusters common to both and set
all other to zero for a particular starting value for, here, Jy). The relevant lines in solve.C

are:

for(i=1;i<=NumberConfigurations;i++)

x[1]=0.0001;

2 The ‘Striped’ Model State for the CAVO Lattice

The second model state is one in which the spins align in ‘stripes.” We define this to mean
here that if the coordinate z is odd then we have an ‘up’ spin and if its even then we
have a ‘down’ spin. We thus again have two sublattice and we again rotate the local spin

coordinates of the ‘up’ spins by 180° about the y-axis (using the transformation of Eq. (11))
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such that all spins now appear to lie in the downwards z-direction. The Hamiltonian is given by:

H = J1/2Z Z{ {S Sz—i—z + 8 S’L—|—;U + Sz Sz—l—z

% *ch

_Jl/QZ Z{ {8 Sz+y+3 Sz+y}+sz z—|—y}

{ _yay

_ Jo ((z:)){i{si*sj + 5,5, }+sisi} (17)
ik

where & and § are unit vectors in the z- and y-directions, respectively.

Type in ccm cavo_striped.ccm at the command line in the ./GUI/ subdirectory. The main

CCM panel should now appear and click on Edit Script.

The setup of this problem is very similar to that for the Néel state and indeed we note
that the information on the unit cell and the lattice nearest-neighbours (used in defining

the fundamental clusters) is identical to that for this CAVO system using the Neel model state.

We note therefore that the main change is to the information stored on the Hamiltonian.
In particular, different directions in the nearest-neighbour bonds have different types of
interactions (i.e., s”s~ and s*sT for the bonds with lattice vectors § and s*s~ and s~s*
for the bonds with lattice vectors %). Note that this model state is a good choice in the
limit J, — oo and so we must set our initial value for z(= J;) to be large in to reflect

this and we sweep from large = to smaller x by choosing a negative value for the increment in z.

We note that only two of the rotations (of 0° and 180°) are allows and thus we have a

two-point symmetry group.

Finally, replace the following lines in int subsetClusters(int *descriptor).
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// x+=0.5;
// y+=0.5;

if (((int) ((x+y+z)/2.0)) == ((int) ((x+y+z+1.0)/2.0)))
with

x+=0.5;
// y+=0.5;
if (((int) ((x)/2.0)) == ((int) ((x+1.0)/2.0)))

and re-compile. This code checks whether x is even or odd and sets and the values of s? for

s% =Y s7 for each cluster accordingly. We note again that s% = 0 is preserved.
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Unit Cell

FIG. 3: The J-J' model is illustrated in diagram (a), where the bonds of strength J between
Kagomé lattice sites are indicated by the thick solid lines and the non-Kagomé bonds of

strength J’ on the underlying triangular lattice sites are indicated by the “broken™ lines.
g ying g

D An Interpolating Triangular/Kagomé Lattice Antiferromagnet

The final example is also perhaps the hardest. This is for a model which interpolates between
a triangular and Kagomé antiferromagnet. The Hamiltonian is given by

H=J) si-sj+J' ) si-s , (18)

(i.5) {i,k}

where (i, j) runs over all nearest-neighbour (n.n.) bonds on the Kagomé lattice, and {7, k}
runs over all n.n. bonds which connect the Kagomé lattice sites to those other sites on an
underlying triangular lattice. Note that each bond is counted once and once only. We explicitly
set J = 1 throughout this paper, and we note that at J' = 1 we thus have the triangular
antiferromagnet (TAF) and at J' = 0 we have the Kagomé antiferromagnet (KAF).
Type in ccm kagome_triangle.ccm at the command line in directory ./GUI/ and edit the

script file. This model has four sites in the unit cell at positions

#1 x=0.0 y=-1.0 z=0.0
#2 x=0.8660254 y=-0.5 z=0.0
#3 x=0.8660254 y=-1.5 z=0.0

#4 x=0.0 y=0.0 z=0.0
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The underlying 2D Bravais lattice is defined by a=(0.0,-2.0,0.0) and
b=(1.7320508,-0.5,0.0).  There are six point-group symmetries corresponding to
rotations of 0°, 120°, and 240°, and reflections in the lines at 30° to the z-axis, at 150° to

the z-axis, and in the y-axis.

For the interpolating J—J' model described by Eq. (18), we choose a model state |®) in
which the lattice is divided into three sublattices, denoted {A,B,C}. The spins on sublattice
A are oriented along the negative z-axis, and spins on sublattices B and C are oriented at
+120° and —120°, respectively, with respect to the spins on sublattice A. Our local axes are
chosen by rotating about the y-axis the spin axes on sublattices B and C by —120° and +120°
respectively, and by leaving the spin axes on sublattice A unchanged. Under these canonical

transformations,

sB%—ésB—TsB ; Sc—>_§50+750 )

Y y . Y Y

3 1 3 1
sz — %s% - §SZB ;S — —%sg - §sé . (19)

The model state |®) now appears mathematically to consist purely of spins pointing downwards
along the z-axis, and the Hamiltonian (for J = 1) is given in terms of these rotated local spin

axes as,

1 3
H= > {—58585 + %(sfs;’ + s7s; — 5757 — 5;55)
(

i—7)

1 _ _ 3 -
+ g(sjsj +5;5) — g(sZ 57 +5;s; )}

1 3
+J > {—53582 + i(sfs}f + sisy — sisi — s;s%)

{i—k} 4
L ) Bt o
+ g(Sz Sp 5 5;) — g(sz Sp Tt 8 Sk)} : (20)

Note that 7 and 7 run only over the Ny sites on the Kagomé lattice, whereas k£ runs over
those non-Kagomé sites on the (underlying) triangular lattice. IV indicates the total number

of triangular-lattice sites, and each bond is counted once and once only. The symbol —
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Bond Directionality in U.C.

FIG. 4. Bond directionality of the J—J' model is indicated by the arrowed lines.

indicates an explicit bond directionality in the Hamiltonian given by Eq. (20), namely, the
three directed nearest-neighbour bonds included in Eq. (20) point from sublattice sites A to
B, B to C, and C to A for both types of bond.

We now set all of the terms which connect the non-Kagomé lattice sites to Kagomé lattice
sites to be part of "H_1.” Thus we also set x = J’' and we also set J = 1. We must
furthermore take into account the directionality of the bonds in H. We do this by setting
Directionality? in the Edit Script panel to be Yes. Thus, when we select any of the
two-spin interaction Terms (e.g., s*s?) we now see that the directionality is indicated by
Directionality — and Directionality <— respectively. Thus if an arrow indicated in
the figure for the bond-directionalities starts at a given site in the unit cell and end at a
“Hamiltonian Neighbour” then we define this term within the fields for Directionality
—. However, if the arrow ends at a given site in the unit cell but starts at a “Hamiltonian

Neighbour” then it goes into the fields for Directionality <.

Note that the script starts the CCM solution from a point at which z = J' = 1(= J). This
is therefore the pure triangular lattice. We decrement z until we reach the Kagomé point at

z = 0.
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[oasenc” 209

Crystallographic Coupled Cluster Method

Edit Script Run Script View Results

Options For Run CCM Script:

CCM Script File Name: [cavo_neelccm

Root Path: | automountrfeynmanshomedfeynman/mc cmmdfCCCMinew_CCCMY

Exit

@ COFYRIGHT DAMIAN FARMELL 2002

FIG. 5: The main CCM user interface panel.

I1l. THE GRAPHICAL USER INTERFACE

The user interface consists of three main elements, which are namely: the main panel invoked
when you type in ccm at the command line in the directory ./GUI/; the edit.tcl panel
which allows you to load, edit, and save CCM scripts; and a simple routine plot.tcl which
allows the user to view the results of the CCM simulations.Always run the ccm graphical user

interface from the ./GUI/ directory!

The rest of this section deals with the use of the GUI in order to define and run given CCM

problems and how to view the results.
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A The Main CCM Panel

Type in:

ccm cavo_neel.ccm

at the command line in the ./GUI/ directory. The main CCM panel, shown in Fig. 2,
now appears with a CCM script file called cavo_neel.ccm. The main CCM panel allows
the user to edit a script file, run the script file using the CCM program which determines

the CCM equations and to solve them for a given approximation, and finally to view the results.

1 Defining the Script Name

The CCM script name may be entered in as a command-line argument, as shown above,
although if no command-line argument the script file name is set to be default.ccm. The
ccm script filename may be altered typing in a new name in the script name field. The root
path is, as mentioned above, the directory in which all of the CCM subdirectories, also shown

above, are placed. (This may be altered, although in most cases this will be unnecessary.)

2 Editing/Creating a Script

The script file may be edited (or indeed created) by now clicking on the Edit Script button.
If the script does not already exist then default values (i.e., for the 1D spin-half transverse
Ising model) are used and if the script does already exist then all of the information is loaded

into memory and the edit script panel is opened.
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3 Running a CCM Simulation for a Given Script

A script file is “run” by now clicking on the run Script button. Note that a number of
options are available using the Options For Run CCM Script menu button. Clicking on

this button reveals the following options:

e Define Clusters Only - the fundamental CCM clusters are defined only and no CCM
equations are determined and/or solved. This routine reads in the CCM script file in
order to get the name of this particular simulation (which not necessarily be the same
as the CCM script file name!!) and creates a list of these clusters which are saved in the
directory ./GUI/. All such files are identified by the .configs appellation and example

of such a file might be 1sub8_cavo.configs.

e Obtain CCM Equations Only — determines the CCM equations for a given set of fun-
damental CCM clusters. This routine reads in the CCM script file in order to get the
name of this particular simulation (e.g., 1sub8_cavo) and adds the .configs appella-
tion to this name and then looks for this file. If the file does not already exist then the
routine to determine the CCM equations will fail. If the file does exist and the obtain
equation routines is successful then the resulting CCM equations are stored in a file
identified by the name of the particular simulation (e.g., again 1sub8_cavo) with the

appellation .input.

e Solve CCM Equations Only — solves the CCM equations for a given set of funda-
mental CCM clusters and given CCM equations. Again, the script file is read in order
to determine the simulation name (e.g., again lsub8_cavo) and the corresponding

.configs and .input files must already exist for the routine to work.

e Define, Obtain, and Solve! - this option allows you to do all of the above (in the

correct order) at once.



User’s Guide: Crystallographic Coupled Cluster Method

The usefulness in this approach is that once the fundamental clusters have been defined and/or
the CCM equations determined one doesn’t have to re-do these parts, for example, if one runs
the solve equations routine but with starting and finishing points for a tunable parameter within
the Hamiltonian. Clicking on the Run Script button now performs the tasks in accordance
with the options chosen.

The most time consuming part of the CCM calculation is generally involved in determining
the CCM ground-state ket equations, although solving the CCM equations may also be time
consuming — especially if one is using the “direct iteration” option for larger levels of ap-
proximation. Even determining the fundamental clusters is an exponentially increasing (and
indeed open-ended) problem. (The current version should run adequately quickly up to about

LSUB12 however.)

4 Plotting The Results

Clicking on the View Results button now again causes the script file to be read in and the
particular simulation name (which we again note need not necessarily be the same as the CCM
script file name) is read in. The results are stored in a file with appellation .output and so for
simulation name 1sub8_cavo this would read in the file 1sub8_cavo.output. Furthermore,
the initial maximum and minimum values for the x- and y-coordinates is automatically input

from the script.

B The Edit Script Panel

The heart of the user interface in contained in the Edit Script panel. This panel allows
one to fully define and control the CCM simulation from start to finish. Clicking on the Edit
Script button in the main CCM panel now causes this panel to appear.

The results of this subsection describes what each option is and how it is used individually

working from the top of the panel to the bottom.
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1 The CCM Script File Field

The name of the script file can be changed at any time by changing the name in this field.
Note however that this doesn’t change the name of the script in the parent Main CCM panel.
(Note the data in the script must be loaded from disk by clicking on the Load button before

any changes to the information in any of the other fields takes place.)

2 Exiting the Edit Script Panel

The Edit Script panel is exited at any time by pressing the button marked Exit. Note that
this does NOT automatically save any information that has been changed in the current CCM

script file.

3 Load a CCM Script File

A CCM script is loaded from disk in the ./Data/ directory by clicking on the Load button.

4 Save a CCM Script File

A CCM script is saved from disk by clicking on the Load button. Any previously existing file
of the same name in the ./Data/ directory is automatically overwritten. If you don’t want this

to happen then type in a different script name into the script name field, described above.

5 Refreshing the Panel

Note that changing certain fields and values in the panel causes the elements on the panel
to change in real-time. However, the user must either click on the Refresh button or press
(Return) on the keyboard when the Edit Script panel is selected for any changes to take

effect.
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6 Parameters governing the Simulation

The fields and options belonging the subject Parameters written in red under the button

described above are now explained:

e Work Directory The path of the input/output created by running a script may be
changed by amending this field. Note that choosing a directory on the local machine
(e.g. /scratch/ or /tmp on which the CCM process is running may quicken the speed of
the CCM program by an order of magnitude, depending of course on the speed of the
network. It is thus recommended that (especially for higher levels of approximation) that
the “local” disk is used to store all files (e.g., often large files which contain the CCM

‘

equations. Note that the results file (a “.output” file) will be stored in this directory.

e Run Name This field defines the root name of of all of the input/output files associated
with a given CCM simulation. This is NOT the same as the CCM script. Rather the
‘results file’ option defines the full name of the .config, .input, and .output files

described above.

e Output level This determines amount of output produced by the CCM code in a given
run. Choosing 0 gives a small amount of output whereas > 6 is verbose. Note that a

special case of -1 produces no output, which is useful for long background processes.

e Dimension Input the spatial dimension of the lattice in here (e.g., 2 for the square

lattice.

e Spin (0.5,1.0,...) Inputthe spin quantum number s here, which must be a multiple
of 0.5. Note that this “global’ parameter for the quantum spin number s must be equal

to the largest value of s on any of the sites in the unit cell.

e SUBn-m n= Input the maximum number of spin flips in any cluster for a given approxi-

mation. Note that one sets n = 2 X s X m for a spin-s system in order to define the
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LSUBn approximation as one may only have a maximum of 2s spin flips at any particular

site.

e SUBn-m m= This defines the “locale” of the CCM approximation. It is taken here to

mean only those sites which are connected by m contiguous sites.

e Sol. Strategy The non-linear CCM equations may be solved via Newton-Raphson
or via direct iteration, and this menu allows the user to select either of these options.
Newton-Raphson is more memory intensive the direct iteration, although it is at least an
order to magnitude quicker than direct iteration. Newton-Raphson is thus recommended
for most approximation levels. However, for very high levels of approximation direct
iteration may be the only possible solution strategy. Note that the parallel version of

the code works ONLY for direct iteration at this time.

e Restrict Clusters The fundamental clusters for a given approximation are deter-
mined in the Define Clusters part of the CCM algorithm. However, often the ground
state is known to lie within a subspace of the total Hilbert space. This option, which
is a “pull-down menu” surrounded in blue, allows the user to restrict the clusters to
lie within a given spin subspace. The first option is to make no restriction, whereas
the second restriction allows only an even number of spin-flips in the CCM correlation
operators (e.g., as for the XXZ with a planar model state [19] or the XY model [20]).
Finally, a user-defined restriction which involves altering the CCM C code may also be
used, for example, in order to stay in the s5. = >, s7 = 0 subspace. More of this is said

in the “Advanced” topics in the tutorials above.

7 Parameters Governing the Solution of the CCM Equations

The parameters which govern the solution of the CCM equations are now explained and this

parameters are to the right of the word Solve: written in red in the Edit CCM Script panel.
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As mentioned above, the prefactor for “H_1" may be varied from a starting to a fin-
ishing value in constant increments. Thus, input the minimal and maximal values of z
in the relevant fields. Choosing a positive value for the increment x field means that
the one sweeps from the minimal to maximal value of z and choosing a negative value

for the increment x field means that the one sweeps from the maximal to minimal value of z.

The user is also asked to input maximum and minimum values for the y values (i.e., the
ground-state energy, magnetisation, second-derivative of the energy, or the first ket-state
CCM correlation coefficient) which is used when the plot.tcl program is called. Choose
these parameters approximately at first and then use the supplied plotting program in order to
refine your intial guesses. The user is advised to use a standard plotting packages (e.g., xmgr
or xmgrace) for complicated cases and, e.g., for producing postscript figures. The supplied

plotting program is only meant to be for quickly viewing CCM results only...

8 The Bravais Lattice

The Bravais lattice is uniquely defined by three vectors a, b and c. Cartesian coordinates are
used to define these vectors and the so the relevant coefficients may be entered into the z-, y-,
and z- components of (the 1 x 3 vectors) in the three fields in brackens for the three vectors

a, b and ¢ shown in the Edit Script panel, as required.

9 The Unit Cell

The number of sites in the unit cell is defined using the blue pull-down menu called # Sites
Unit Cell. However, in this implementation only a maximum number of 6 sites in the
unit cell is allowed for the sake of simplicity. This should covers most cases that the user is
interested in, although in principle one can use the C CCM code within an arbitrary of sites

in the unit although this is an “advanced” topic.
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Please note that the user must click on Refresh or press (Return) in order to view and
enable information (which may then be edited) if a larger number of sites in the unit cell is

ever selected.

The Edit Script panel allows the user to input the z-, y-, and z- coordinates in the three
fields clearly indicated for each site by x=, y=, and z=, respectively, and to input the value of
the quantum spin number for this site indicated by s=. Thus, ferrimagnetic models may be
treated by selecting different values for the quantum spin number on different sites within the
unit cell. Note that the “global’ parameter for the quantum spin number s must be equal to

the largest value of s on any of the sites in the unit cell.

10 The Lattice Nearest-Neighbours

Part of the Define Cluster algorithm involves knowing the nearest-neighbours to each site in
the unit cell. The user must now enter information about the nearest-neighbours in order to
enable this. Each time the user selects a given number of sites in the unit cell, as described
above, they must refresh the panel in order to display the relevant information for the lattice

nearest-neighbours.

Firstly, the number of nearest-neighbours must be defined for each site in the unit cell. Each
site in the unit cell (from one to six) is denoted as “UC#1,” 'UC#2,” --- “UC#6.” A pull down
menu in blue allows the user to select the number of lattice nearest-neighbours for a given
site in the unit cell. Note that this therefore does not have to be the same for each site in
the unit cell. The fields which describe each neighbour are “enabled” by again refreshing

the panel by clicking on Refresh or by pressing (Return) anywhere in the Edit Script panel.
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The nearest-neighbours are indicated by a Bravais lattice translation to a new site in one unit
cell. Thus, each nearest neighbour (1, 2, ---, 8) for a given site in the unit cell is indicated
by four fields which are namely z,y, z, cell, thus producing: xx a Bravais lattice vector
translations (the first field); yx b Bravais lattice vector translations (the second field); zx ¢
Bravais lattice vector translations (the third field); to a new site cell (the fourth and final
field). (Note that certain nearest neighbours may be in the same unit cell and so z, y, and z

would all be zero.)

11 Parameters for the Hamiltonian

The Hamiltonian is now defined by entering information into the fields below Parameters
for Hamiltonian written in red in the Edit Script panel. However, there is often so
much information for the Hamiltonian that no possible way of displaying all of the information
for a given term in H is possible. Thus, the user must select a given term and then “enable”

it by clicking on Refresh or by pressing (Return) anywhere in the Edit Script panel.

Firstly, the user must decide which part of the Hamiltonian they want to consider. We
remember that H_1 has a prefactor of z and H_2 of 1. The blue pull-down menu marked H_1
or H_27 allows the user to select this. Secondly, each term within H; and H, is defined by
selecting a site in the unit cell denoted as Site in UC in blue and an interaction type (e.g.,
, sTs%, s7s7, s*, etc.) denoted as Term In Hamiltonian also in blue. Again, the
user must “enable” the fields within define each term within H; and H, by now clicking on

Refresh or by pressing (Return) anywhere in the Edit Script panel.

Except for the interactions s?, s™, s, and (s?)?, all of the other interactions connect from
one site in the unit cell (defined by the Site in UC pull-down menu in blue) to another site

perhaps in another unit cell. These are called “Hamiltonian Neighbours.” The number
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of such “Hamiltonian neighbours” is defined by the pull-down menu in blue marked #Ham.
Neighs. and again the user is restricted to maximum of 8 of these. Again, changing

information in this menu can be “enabled” by refreshing the panel.

There can be a maximum of 8 Hamiltonian neighbours and each one is represented by the
appropriate number from 1 to 8 and four trailing fields. Again, these fields represent a
translation of: xx a Bravais lattice vector translations (the first field); yx b Bravais lattice
vector translations (the second field); zx ¢ Bravais lattice vector translations (the third field);

to a new site cell (the fourth and final field).

Note that the terms s*, s™, s~, and (s*)? apply to a single lattice site only and so never
involve a lattice translation. Also, sometimes the bonds in H are “directional” and one
may set the pull-down menu in blue marked Directionality? to No or Yes in order
to define this. Directionality means that a given terms in the Hamiltonian is depen-
dent on where it starts and finishes, and so the direction of this interaction is crucial. See

Tutorial 4 for more information about this for the Kagome-triangular lattice Heisenberg model.

IMPORTANT Different interactions within H; and H, will probably have different coeffi-
cients. This is defined in the fields marked Coeff and so may be different for varying values
for the blue pull-down menus Site in the UC, Term in the Hamiltonian and H_1 or

H_27, AND for each of the Hamiltonian Neighbours.

12 The Lattice Point-Group Symmetries

This is denoted by Define Lattice Symmetries written in red and the total number of lat-
tice point-group symmetries is enter into the field directly after Total Number Symmetries.

Again, there may be many such lattice symmetries and so these are dealt with one-at-time by
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selecting a particular symmetry operation by keying in the relevant number into the field This
Symmetry Operation. Again, the user must “enable” all information for this symmetry

operation by clicking on Refresh or by pressing (Return) anywhere in the Edit Script panel.

Symmorphic point-group operations are defined by setting the non-primitive translation vector
in the three (z-, y-, and z-fields respectively) after T= to zero. Non-symmorphic point-group
operations are defined by entering the relevant components of the non-primitive translation
vector (note that this is in terms of Cartesian coordinates and NOT components of the
Bravais lattice vectors!) into these fields for the symmetry operation defined the number in

the field after This Symmetry Operation.

A 3 x 3 matrix denoted R= defines the “rotation” part of the point-group symmetry operation.
Thus the new Cartesian coordinates (z',,2'), with respect to the original Cartesian coordinates

(z, y, 2), is given by:

z’ Ri1 Rip Ri3 z T,
y' | = | Roi Rep Rog y || T, (21)
4 R31 R3p R33 z T,

C The View Results Panel

The View Results Panel appears when one clicks on the View Results of the main CCM
panel. The script currently being displayed in the main CCM panel is read in and the name of
the particular simulation file with appellation .configs is read in. Note that no data is read
in at this point. The initial maximum and minimum values for the z- and y-coordinates are

also read in from the script file.

The maximum values of the z- and y-coordinates may be changed at any time by entering
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the changing the values in the relevant fields. These new values are enabled by clicking on the
Clear/Rescale button. This also wipes out all previous plots of data. Note that this routine
is supplied as a simple and quick way for the user to view their results immediately, although
for more detailed and professional plots the user is urged to use a standard plotting package

(such as xmgrace) directly on the relevant . output which is an ASCII file arranged in columns.

Data is read in by clicking of the button Plot which reads in the data of the simulation file
indicated in the File field. Note that more data results files may be read in without deleting
the existing data plotted to screen. Indeed, each new data set is given a different colour.
Unfortunately, for this simple plotting routine all data is lost when the Clear/Rescale

button is clicked on.

Different columns of the .output data file, which correspond to different quantities, may be

read in by selecting the appropriate option in the pull-down menu in blue marked Plot What?.

We may now set the maximum and minimum values of the y-coordinate to be 0.5 and -0.1
respectively and click on Clear/Rescale. Thus, one sets the option in the pull-down menu

in blue to Magnetisation and then replots the data.
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APPENDIX A: THE CCM GROUND-STATE FORMALISM

The exact ket and bra ground-state energy eigenvectors, |¥) and (¥, of a many-body system

described by a Hamiltonian H,
H|V) = E,|0); (J|H = E, (9|, (A1)
are parametrised within the single-reference CCM as follows:

T) =e[®); S=3 SiICF,
140
(U] = (®|Se™; S=1+> 8Cr . (A2)
0
The single model or reference state |®) is normalised ((®|®) = 1), and is required to have the

property of being a cyclic vector with respect to two well-defined Abelian subalgebras of multi-
configurational creation operators {C} } and their Hermitian-adjoint destruction counterparts

{C; = (C)T}. Thus,

®) plays the role of a vacuum state with respect to a suitable set of

(mutually commuting) many-body creation operators {C} },
Crl®) =0, I#0, (A3)

with C; = 1, the identity operator. These operators are complete in the many-body Hilbert

(or Fock) space,
Crle)(@|CT

=IO 2 e oy

0
We note that although the manifest hermiticity, ((¥|" = |¥)/(W|®)), is lost in these parametri-

(A4)

sations, the intermediate normalisation condition (¥|¥) = (®|¥) = (B|®) = 1 is explicitly
imposed. The correlation coefficients {SI,SI} are regarded as being independent variables,

even though formally we have the relation

= (®eS'eS

The full set {81,31} thus provides a complete description of the ground state. For instance,

an arbitrary operator A will have a ground-state expectation value given as

A= (U[AD) = (B|Se " Ae|®) = A ({S1,51}) (A6)
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We note that the exponentiated form of the ground-state CCM parametrisation of Eq. (A2)
ensures the correct counting of the independent and excited correlated many-body clusters
with respect to |®) which are present in the exact ground state |¥). It also ensures the
exact incorporation of the Goldstone linked-cluster theorem, which itself guarantees the size-
extensivity of all relevant extensive physical quantities [8].

The determination of the correlation coefficients {81,5’1} is achieved by taking appropriate
projections onto the ground-state Schrodinger equations of Eq. (Al). Equivalently, they may

be determined variationally,

SH/6S; = 0= (®|C;e SHeS|®) =0, VI#0 ; (A7)

SH/6S; = 0= (®|Se™5[H,C{1e%|®) =0, VI#0 . (A8)

Equation (A7) also shows that the ground-state energy at the stationary point has the simple
form

Ey = E,({S1}) = (Dle™" He®|) . (A9)

We note that Eq. (A7) represents a coupled set of nonlinear multinomial equations for the
c-number correlation coefficients {Sr}. The nested commutator expansion of the similarity-

transformed Hamiltonian,
~ 1
HEe‘SHeS:H+[H,S]+§[[H,S],S]+--- : (A10)

together with the fact that all of the individual components of S in the sum in Eq. (A2)
commute with one another, imply that each element of S in Eq. (A2) is linked directly to
the Hamiltonian in each of the terms in Eq. (A10). Thus, each of the coupled equations
(A7) is of linked-cluster type. Furthermore, each of these equations is of finite length when
expanded, since the otherwise infinite series of Eq. (A10) will always terminate at a finite
order, provided (as is usually the case) only that each term in the second-quantised form of
the Hamiltonian H contains a finite number of single-body destruction operators, defined with
respect to the reference (vacuum) state |®). Therefore, the CCM parametrisation naturally

leads to a workable scheme which can be efficiently implemented computationally.
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The CCM formalism is exact in the limit of inclusion of all possible multi-spin cluster corre-
lations within S and S, although in any real application this is usually impossible to achieve.
It is therefore necessary to utilise various approximation schemes within S and S. The three
most commonly employed schemes have been: (1) the SUBn scheme, in which all correlations
involving only n or fewer spins are retained, but no further restriction is made concerning
their spatial separation on the lattice; (2) the SUBn-m sub-approximation, in which all SUBn
correlations spanning a range of no more than m contiguous lattice sites are retained; and
(3) the localised LSUBm scheme, in which all multi-spin correlations over distinct locales on
the lattice defined by m or fewer contiguous sites are retained. We also make the specific
restriction that the creation operators {C} in S preserve any additional symmetries of the
Hamiltonian. Thus, the approximate CCM ground-state wave function is constrained to lie in
the appropriate subspace defined by the additional quantum numbers corresponding to these
additional symmetries. For the XXZ model illustrated later the additional symmetry is pro-
vided by the total z-component of spin s% = 3, s?, which commutes with the Hamiltonian.
The ground state lies in the sector s% = 0. We denote as distinct configurations those in
such appropriately defined subspace which are inequivalent under the point- and space-group
symmetries of both the lattice and the Hamiltonian. The number of such distinct (or funda-
mental) configurations for the ground state at a given level of approximation is labelled by

Np.
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APPENDIX B: THE HIGH-ORDER CCM FORMALISM

In order to determine the CCM ground-state ket configurations we fundamentally need to
pattern-match the configurations in the set {C; } to the spin-raising operators contained in
H|®). We note that for small values of the truncation indices {m,n} mentioned in the
previous section (and thus for low orders of approximation) this may readily be performed
analytically. However, for higher orders of approximation we must use computational methods
(see for example also Refs. [17, 18, 22, 26]) in order to do this. For the cases of interest here,
we begin by defining a set of local spin axes in which all of the spins in the chosen model state

|®) point along the respective negative z-axes, namely

N
[®) = @) | 1)i; in the local quantization axes, (B1)

i=1
where | |); = |s,—s);. This is achieved by an appropriate set of local rotations. Since

such rotations are canonical transformations, the underlying spin algebra is preserved, and
the energy spectrum of the transformed Hamiltonian (i.e., written in the rotated local spin
coordinate scheme) is unchanged.

The next step in the computational implementation of the CCM for lattice quantum spin
systems of general spin quantum number, s, is to define a suitable set of multi-spin creation
and destruction operators with respect to this model state. We thus define the CCM ket-
state correlation operator S in terms of sums of products of single spin-raising operators,

si = s¥ +is}, (again with respect to their local spin axes), such that

N N

S = ZSilsZ + Z SivinStst 4+ (B2)
11 11,22

The coefficients S;,, S;, 4,, and so on, now represent the spin-correlation coefficients specified

by the sets of site indices, {i1}, {71,472} and so on, on the regular lattices under consideration.

We note that these indices run over all lattice sites, and that different indices may thus indicate

the same lattice site. For the case of general spin quantum number s we note that we have a

maximum number of spin-raising operators at any specific site [ which is 2s;, where s; is the
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spin quantum number of the spin situated at site [. For the spin-half case, we are thus limited
to only one spin-raising operator per lattice site as required, and we note that in this manner
we build in a previous spin-half high-order CCM formalism (see Refs. [17, 18, 22, 26]) into
the new high-order formalism for general-s directly from the outset. In order to simplify the

high-order CCM formalism, it is also found to be useful to define the following operators:

N

Fy, =5y Zz@,---,z’; U Sk g, iy 3i+2 < s;l“
Grm = Yis1 Digody = 1) Skomiis, iy 32; . ..sjl
Mimn = Y2 Ligemiy W= 1)1 —2) Skimomjia,mi sfee sg

Nk’m’n,p = El>3 Zi5,"',il l(l - 1)(l - 2) (l - 3) Slc,m,n,p,’i5,---,il SZ; PR S’Z‘;

7/

Hence, we determine the similarity-transformed expressions of the single-spin operators
s* 5 a = {+,—, 2}, where s = (s7) = s® —is¥, by using Eq. (A6) and the usual

spin commutation relations, such that

—S oS — at _ ot
e spe’ =8 =5

e_SszeSE 5j, :32+st; (84)
S pS — i — o + 2+

e s e’ =38, =5, —2F;s] — Gpsy — (Fi)*s),

For the specific case of s = 1/2 at site k we note that G, = 0 because “double occupancy”
of the lattice site £ is prohibited in this case. In order to determine the similarity transformed
version of a given Hamiltonian, we also need to know the commutation relations of the op-
erators defined in Eq. (B3) with the single-spin operators s* ; « = {+, —, z}, and these are
stated in the Appendix.
We now define the set of CCM destruction operators {C} } (of [ number of spin-lowering
operators), as follows

Cr =sps;, " 85 (B5)
where the indices ji, jo,: - -, J; represent any given lattice site. We choose only one of the

Np(I')v; symmetry-equivalent configurations to pattern-match with the terms within H in

order to determine the CCM ket-state equations of Eq. (A7). Note that Np is the number of
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Bravais lattice sites and that, for a given cluster I, v; is a symmetry factor dependent purely
on the point-group symmetries (and not the translational symmetries) of the crystallographic
lattice.

The process of the enumeration of all possible fundamental clusters and the process of “pattern-
matching” are both ideally suited to an efficient computational implementation, and a full
description of these processes is also given in the Appendix. Furthermore, it is a simple matter
to determine and solve the CCM bra-state equations, once the ket-state equations have been
obtained and solved, as described in the Appendix, where we also explain the technicalities

involved in obtaining ground-state expectation values.

1 Commutation Relations and The High-Order General-s CCM Formalism

In this article we present a new formalism and results for high-order ground-state CCM cal-
culations for general spin quantum number, s, based on a model state in which all spins on
the crystallographic lattice point downwards along the local z-axes. A large part of the new
formalism relies on the new “high-order” CCM operators defined by Eq. (B3) and also their
commutation relations with the single-spin operators in order to determine the similarity trans-
forms of various operators, such as the Hamiltonian for example. In order to determine these
commutation relations we firstly remind ourselves that the ket-state correlation operator S is
given by Eq. (A2) with Cf = s s -+ sif and §; = S;,i,,...i,, and hence

S = Z Z Siy o, iy s;:s;; e s;t , (B6)

1 ityia,is

where each of the indices {i1, s, - - -, 4;} runs over all lattice sites with the condition that there
can be no more than 2s of them at any particular lattice site. The usual spin commutation

relations of the spin operators also apply,

(s, 501 = 28700 5 [sf,sp] = £s701p (B7)
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We also note that the commutation of a given operator with S must be distributive, such that

[sg,S] = > > Sil,im...,il{[sg,sjl]sw -8y st sy, s lsi - st

U d1,82,%

b dstst s ”]} (B8)

71 12

where o = {z,+,—}. As pairs of spin-raising operators always commute, we may therefore
state that [s;,S] = 0. Furthermore, for the case of [s?,S] we note again that each index
runs over all lattice sites, which implies that each term on the right-hand side of Eq. (B8) is
equivalent and that, as there are [ such terms, we may write this expression as

(58,81 =" > 1 SkyinmitSi, - - - Sib sk = Frsf (B9)

1 iy
Note again that the “high-order” operators such as Fy are defined by Eq. (B3). We lastly
calculate the commutator [s;,S] in Eq. (B8), and using the basic commutation relations of
Eq. (B7) we thus have
s, 8] = —=2> Sil,im...’il{ék,ilsZs;; S8 4 OpySiSESH e Sh

I 41,582,759

+ - +5kll Siy z2 Sz} ’ (B10)

We now commute the operator s} past the strings of spin-raising operators in Eq. (B10) using

the basic commutation relations of Eq. (B7). Thus, for example,

+ .t + __ X . + .
SkS’LzSZ;g Sil - (519712 + 5k;13 + 5k Zl) ’LQ Z3 Sil

+ sisitoesist (B11)

] Zs 2

By inserting Eq. (B11) into Eq. (B10) we find that

-1
[Slz, S] = - 2 Z Z (Z)Sksk’iii""’ll 82;52:1 oo SZSZ

I 13,84, n=1

+ .2
- 2 Z Z lSk ZZ} ﬂl 12 Z3 s Sll Sk

U 12,03,

= _Gk,ksz — 2Fk$z 5 (812)

using the definitions in Eq. (B3). We note again that for the case s = 1/2 the operator
Gk,k = 0.
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By making use of the nested commutator expansion for the similarity-transformed operators
[c.f., Eq. (A10)], it is now a simple matter to verify the relations in Eq. (B4), by using Egs.
(B9) and (B12).

In order to determine the similarity transform of the Hamiltonian however it is also necessary
to also know the commutation relations of the single-spin operators with respect to Fj, F?,
Gr,m, and My, . The proofs of these commutation relations follow a similar pattern to the

proofs given above, and so we merely state them here:

.
[s%> Fm] = Grmsy

[8%) Gm,n] = ]V-”kﬂn,mgllL 1

[s7,F2] = 2FmGk7ms,‘: ,

57, Fin] = —2GpmsE — My pms) ’ (B13)
s, F2] = —2G} .sf = 2Fn Mk msi — 4FnGrmsy

[s% Mimnnpl = NemnpSt

5k:Gmn] = —2Mk,m,nsz—Nk,k,m,nsz J

We note once more that the operators Fy, G m, Mkmn, and Ni,p, are defined by Eq.

(B3).

2 Enumeration of the Fundamental Clusters

At a given level of approximation, we choose only one of the Ng(l!)v; possible symmetry-
equivalent configurations for a given fundamental configuration of [ spin-raising operators,
where Npg is the total number of Bravais lattice sites, and where v; is a symmetry factor
dependent purely on the point-group symmetries (and not the translational symmetries) for
the crystallographic lattice in question and for fundamental configuration I. We note that
there are N such fundamental configurations. The first part of the computational algorithm
is to enumerate all of the “lattice animals” which define the “locale” in which the clusters

must lie. For the levels of approximation shown in this article it is possible to do this by using a
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simple recursive algorithm which enumerates all possible lattice animals of m contiguous sites.
This “locale” is explicitly assumed here to be the same for both the LSUBm and SUBn-m
approximation schemes. Secondly, one then needs to enumerate all possible ways in which one
can place (2s) or less spin-raising operators on each of the positions of the m sites within each
of these lattice animals. There are thus (2s)™ possibilities for each lattice animal. However,
one must also restrict the total number of spin-raising operators to be less than or equal to
n for the SUBn-m approximation scheme. We note however that there is no such restriction
on the total number of spin-raising operators for the LSUBm approximation. This process
thus enumerates all possible connected and disconnected clusters, and we make a restriction
that we include only those clusters which are inequivalent under the point and space group
symmetries of both the lattice and the Hamiltonian. A further restriction for the systems
under consideration in this article is that we must restrict the set of fundamental clusters to
include only those which preserve the relationship, s7 = >, s? = 0, with respect to the original
(“unrotated”) Néel model state since [s5, H] = 0 and the ground state lies in the s = 0

sector.

3 The Ket-State Equations

We now wish to determine the CCM ket-state equations, where the I-th such equation is given
by

E; = Ail<<1>|c;e—SHeS\<1>> =0 ,VI#0 , (B14)
where A; is a normalisation factor given by A; = (®|C;CIP) =
(®|(s;,85, - 5i,) (siisi---s7)|®). We note once more that we choose only one of
the Ng(I!)v; possible symmetry-equivalent configurations for a given fundamental configu-
ration in C; in order to pattern-match with the terms within H|®) and thus determine the
I-th CCM ket-state equation. We then computationally match the individual spin-lowering
operators in C7, defined by Eq. (B5), to the spin-raising operators in H|®). We therefore

put constraints on the indices in the CCM ket-state correlation coefficients, {S;, i,....;; }, and
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these constraints on the indices allow us to enumerate all possible terms which contribute to
the CCM ket-state equations. For example, we may consider a specific term in the evaluation

of the CCM ket-state equations, given by
(®|C; 555 |®) = (D|Cr (sisfn + F,s. 85 + Fysis?,
+ Gmstst + Fkas;s;) @) . (B15)

For the case of the linear chain Heisenberg model we let £ run over all lattice sites on the
1D chain and we set m = i + 1. Now consider a specific term within Eq. (B15), given by
(®|CT FpFpsy s |®). We match the indices of the spin-lowering operators in C to the spin
raising-operators in Fy, F,,, s;, and s}. Hence, both k and m are fully constrained to take
on site values dependent on those indices of the spin-lowering operators in the fundamental
configuration chosen for C'; . We note however that one may not always have such complete
constraints on the indices £ and m in H. For example, we may attempt to evaluate such a
term as, (®|C] FyF,sis%,|®). In this case, both k£ and m are free to cover all lattice sites
independently from the fundamental cluster utilised in C; . However, we may retain only those
configurations in the set {S;, ;,...;,} in F and F,;, which are equivalent to the fundamental
set of configurations under the symmetries of the lattice. This condition is sufficient to
render the computational problem both tractable and efficient. Finally, the resulting coupled,
non-linear CCM ket-state equations are easily solved computationally (for example, via the

Newton-Raphson method) at a given value of the anisotropy parameter A.

4 The Bra-State Equations

The bra-state coefficients Sy of Eq. (A2) are formally determined by Eq. (A8). However, this
form of the bra-state equations is slightly cumbersome to use, and a simpler and more elegant

approach is possible by defining the following new set of CCM correlation coefficients given by

zr = 81

. , (B16)
.’Z‘I = N—I\?SIA[VI(“)
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where again A; = (®|C7CT|®) = (®|(s;,s5, - s;,) (i85 5i)|®). Note that Np is the
number of Bravais lattice sites. Note also that for a given cluster I then v; is a symmetry
factor which is dependent purely on the point-group symmetries (and not the translational
symmetries) of the crystallographic lattice and that [ is the number of spin operators. We
note that the coefficients A;, v, and N however do not need to be explicitly determined

because they always cancel out when obtaining ground-state expectation values (see below).

The CCM bra-state operator may thus be rewritten as

~ Nr &
S=1+NY e | (B17)
I=1 Ar
such that
T

We note again that the ground-state energy expectation value is defined by E, =
(®le 5 He"|®) and that Ey is the I-th CCM ket-state equation defined by Eq. (B14). The
CCM ket-state equations are easily rederived by taking the partial derivative of H/N with

respect to Ty, where
S(H/N)
0=——F—>=FE; . B19
%1 ! (B19)
We now take the partial derivative of H /N with respect to x; such that the bra-state equations

take on a particularly simple form, given by

_ Np
— 5(H/N) — 5(E0/N) + deﬁ . (BQO)
51’[ (5.’L‘I

0

This equation is easily solved computationally, once the CCM ket-state equations have been
determined and solved, and the numerical values of the coefficients {Z;} may thus be obtained.
We note that this approach greatly simplifies the task of determining the bra-state equations

because we never need to explicitly determine the factors Ng, Ay, or v;.

5 Expectation Values

Expectation values of spin operators may be treated in an analogous manner to that of the

expectation value of the Hamiltonian, given by H. For example, the sublattice magnetisation
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for the spin-half and spin-one antiferromagnets of Eq. (??) may be written as

= —x Z || )

=1
18 7, N N
=1--3 ~2|C; Y. (Fis)|®)
s 1o Ar i=1
1 NF
=1—=> 11" Zzr , (B21)
ST

where i runs over all lattice sites. We again note that the factors A; and vy in Eq. (B21) have
cancelled out. Equation (B21) is easily evaluated once the ket- and bra-state equations have
been solved at a given value of the anisotropy parameter A. (Results for both the ground-state
energy and the sublattice magnetisation are given in Section Il of this article.)

The situation for the ferrimagnet is slightly different, because the unit cell now contains two

spins. Thus the magnetisation on N; the spin-half sites (s = 1/2) is given by,

1 X
M, = —— U|s? |
TR AL
N NF N1
=1—-— o|C i Si )| @
w2 (07 Y (s
.T] M
S a3 Tl S (RshIe) (B22)
I=1 Ap i1=1
Note that 7; runs over all Ni(= N/2) spin-half lattice sites, such that we have the factor
s% = 4. It is a simple matter to explicitly enumerate all combinations of orderings of

the [ spin-raising operators in YL, F} s which match with spin-lowering operators in Cr,

11=1"121°%

although we must also explicitly restrict i; to be a spin-half site. (We note that the factors
A; again cancel out with coefficients in (®|C; 1L, (F;,s7)|®) at this point.) A similar

expression may be obtained for M, which is given by
R

MQ:_W . (‘I’|5 )

:1—22“ (®|C Z W) |®) (B23)

10=1

where iy runs over all No(= N/2) spin-one lattice sites. Note that this approach was also

utilised for a spin-half model which interpolated between a triangular-lattice antiferromagnet
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and a Kagomé-lattice antiferromagnet [29]. In this case, we wished to evaluate the sublattice
magnetisation on the Ni = 3N/4 Kagomé-lattice sites only.
We may also determine numerical values for other expectation values, such as the spin-spin

correlation function, given by

2z 1 Al ~Z2 5z
Mr = Z(‘Il|sksk+r|q}>
N k=1

We see from Eq. (B15) above that this expression may be written in terms of our high-order

CCM operators as

1 Np T B N
Mrzz = <(I)‘{_ + § : _ICI } z :(stz+r + Fmslj+r8z + stljserr
N I Ar k=1

=1

+ Grparst 5ty + Fillsrsish, ) 10) (B24)

The right-hand-side of Eq. (B24) may be evaluated computationally in exactly the same
manner as for the ket-state equations, In this case the only difference is that index r is not
constrained to be a nearest-neighbour lattice vector, and a numerical value for M?* for a
specific lattice vector r is obtained once the ket- and bra-state equations have been solved at
a given value of A. Within the NCCM formalism we note that M?* — + S5 (®|sisi,,|®)
as r — oo using the localised LSUBm or SUBm-m approximation schemes. (Note that this is
not true for the extended coupled cluster method [25], even for such localised approximation
schemes.) However, Eq. (B24) may be successfully used to study the short-range behaviour

of M.

6 The High-Order Excited-State Formalism

Finally, we wish to outline an excited-state formalism developed by Emrich [9] which may be
utilised in order to perform high-order CCM calculations for the exited state [26] of quantum
spin systems of general spin quantum number. We note however that no excited-state results

are presented in this article. The excited-state wave function,

U,), is determined in Emrich’s

formalism [9] by linearly applying an excitation operator X ¢ to the ket-state wave function of
g
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Eq. (A2), such that

T,) = X¢ D) . (B25)
This equation may now be used to determine the excited state of H, where the Schrodinger
equation is given by, H|¥,) = E,|V¥.). This expression may be combined with its ground-state

counterpart of Eq. (Al) to yield the CCM excited-state equation, given by

€.X¢|®) = e 5[H, X°|e%|®) (= R|D)) . (B26)
(Note that ¢, = E,— E,; is the excitation energy.) By analogy with the ground-state formalism,
the excited-state correlation operator is given by,

xXe=S X0, (B27)
T#0

where the set {C;} of multi-spin creation operators may differ from those used in the ground-
state parametrisation in Eq. (A2), if the excited state has different quantum numbers than

the ground state. Hence, by applying (®|C; to Eq. (B26) we find that
€ Xf = (®|Cre " [H, X e’ |®) VI #0 . (B28)

Equation (B28) thus forms a generalised set of eigenvalue equations with eigenvalues ¢, and
corresponding eigenvectors X7 for each of the excited states. We note that in analogy to the
ground-state high-order formalism we may define operators analogous to the Fy, G m, My m n,
and Ny ., Operators in order to facilitate the pattern-matching process of the fundamental
configurations of the excited state in the set {C; } to the terms in e=5[H, X¢|eS. (We note
that the lowest-lying excited states for the XXZ model lie in the s% = +1 and s5 = —1
subspaces with respect to the “unrotated” ground state, and thus we would restrict the
“fundamental” clusters in the set {C}} used in Eq. (??) to be those which reflect this
property.) The resulting set of eigenvalue equations may be easily determined and solved,
once the ket-state equations have been solved at a given value of A. Finally, the interested
reader is referred to Ref. [26] for a full account of applications of high-order CCM calculations
to the limiting spin-half case of the XXZ model for the linear chain, the square lattice, and

the cubic lattice.
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APPENDIX C: PARALLEL PROCESSING

Note that the CCM program may be run in parallel. We assume here that the MP/ interface
has been installed correctly on your machines. There are a number of steps in order to enable

parallel processing:

1. Edit the Makefile so that it the top of this file now reads

# NON-PARALLEL MAKEFILE

#CC = gt++
#CCFLAGS = -0 -g
#1.D = g++
#LDFLAGS = -0 -g
#LIBS = -1m

# PARALLEL MAKEFILE

cc = mpiCC
CCFLAGS =-0 -g -1m
LD = mpiCC
LDFLAGS =-0 -g -Im
LIBS = -I../mpi/

2. Edit the file Constants.h in the directory ./include so that the option PARALLEL FLAG

is set to 1. Now recompile the CCM code in . /bin.

3. Ensure that the solution strategy is set to Direct Iteration. (A parallel version using

Newton-Raphson to solve the CCM equations is envisaged for the future.)
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4. Choose all other parameters as required. In particular, make sure that the Work Directory
is set to a directory which is local to a given machine and that these directories exist on

each machine.

A CCM simulation may now be run from the /it ./bin directory using:

mpirun -n 5 -p ccm.x

where the option —n 5 sets the number of machines to be used in parallel — and is set at the
discretion of the user. Note that the —-p option may not be necessary on systems and that
one might need to specify a machinefile on others. See your network administrator regarding

these options.
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