Coupled Cluster Method for Quantum Spin Systems

Sven E. Krüger

Department of Electrical Engineering, IESK, Cognitive Systems

Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany

sven.krueger@e-technik.uni-magdeburg.de

MAMBT, Manchester, 31. August 2005

collaborations: J. Richter, R. Darradi (Magdeburg) D.J.J. Farnell (Liverpool) R.F. Bishop (Manchester)

Organization of the talk

- Heisenberg model and CCM
- Coupled cluster method
 - application to quantum spin systems
 - spin stiffness
 - excited state
- Results
 - J-J' model
 - $J_1 J_2$ model
 - square lattice, triangular lattice
- Conclusions

Heisenberg model, spin 1/2, two dimensional

$$H = \sum_{i,j} J_{ij} \mathbf{s}_i \mathbf{s}_j$$

ground state HAFM on square and triangular lattice:

 \rightarrow Néel ordered

important mechanisms to destroy magnetic long-range order (LRO): *competition of bonds*:

- higher quantum fluctuations → suppression of long-range order, formation of *local singlets*; e.g., CaV₄O₉, SrCu₂(BO₃)₂
- *frustration* → my yield to PT to noncollinear (spiral) states in the classical model; quantum fluctuations favor collinear order
 → my yield (together with quantum fluctuations) to quantum paramagnetic phase

Heisenberg model and CCM

with CCM it can be calculated in higher orders:

- ground state energy, magnetization
- new: stiffness, gap

CCM is able to describe (for example in the J-J' model)

- frustrated incommensurate spiral phase
- quantum phase transition without frustration

here: quantum phase transition *with* frustration $\rightarrow J_1 - J_2$ model

Coupled cluster method – CCM

I. choose a model state $|\Phi\rangle$ and a set of creation operators (C_I^+)

$$C_I |\Phi\rangle = 0 \quad \forall I \neq 0, \quad \sum_I C_I^+ |\Phi\rangle \langle \Phi | C_I = 1$$

II. ansatz for the ground state $|\Psi\rangle$ with the *correlation operator* S

$$|\Psi\rangle = e^{S}|\Phi\rangle, \ S = \sum_{I \neq 0} \mathcal{S}_{I}C_{I}^{+}; \qquad \langle \tilde{\Psi}| = \langle \Phi|\tilde{S}e^{-S}, \ \tilde{S} = 1 + \sum_{I \neq 0} \tilde{\mathcal{S}}_{I}C_{I}$$

III. ket-state equations (non linear), with $\overline{H} = \langle \tilde{\Psi} | H | \Psi \rangle$ $\frac{\partial \overline{H}}{\partial \tilde{S}_I} = 0 \Leftrightarrow \langle \Phi | C_I e^{-S} H e^S | \Phi \rangle = 0, \Rightarrow \text{ ket coefficients } S_I, \Rightarrow | \Psi \rangle,$ $\Rightarrow E = \langle \Phi | e^{-S} H e^S | \Phi \rangle$

IV. bra-state equations (linear):

$$\frac{\partial H}{\partial S_I} = 0, \Rightarrow \text{ bra coefficients } \tilde{S}_I, \Rightarrow \langle \tilde{\Psi} |, \Rightarrow \bar{A} = \langle \tilde{\Psi} | A | \Psi \rangle$$

CCM – application on spin systems

I. Selection of $|\Phi\rangle$: classical spin state

$$\Rightarrow S = \sum_{i_1} S_{i_1} s_{i_1}^+ + \sum_{i_1 i_2} S_{i_1 i_2} s_{i_1}^+ s_{i_2}^+ + \sum_{i_1 i_2 i_3} S_{i_1 i_2 i_3} s_{i_1}^+ s_{i_2}^+ s_{i_3}^+ + \cdots$$

II. approximation of S - LSUBn

- approximation of ${\cal S}$ is the only approximation in the CCM
- <u>LSUBn</u>: *local* approximation, including correlations with up to n spins
- hierarchical approximation, $LSUB\infty$ becomes exact

CCM – Fundamental configurations example for square lattice: LSUB8 with 259 types of *connected* fundamental confi gurations

			₽	-									
8*8							₽						
											₽ ₽		ц н
÷	F											<u>a</u> ffer	
			₽										
		P											
			T										
		F							F				
		pl.						₽₽					
		F											
		F											
									F	₽₽₽			
				F									

Spin stiffness

• spin stiffness ρ_s measures the rigidity of the spins with respect to a small twist θ of the direction of spin between every pair of neighboring rows:

$$\rho_s = \left. \frac{d^2}{d\theta^2} \frac{E_0(\theta)}{N} \right|_{\theta=0}$$

- $\rho_s > 0 \rightarrow LRO$, systems are stiff
- $\rho_s = 0 \rightarrow$ no LRO, systems are not stiff

CCM – calculation of the spin stiffness

• introducing the twist θ : appropriate changing of the classical spin state of $|\Phi\rangle$, \rightarrow doing the CCM, \rightarrow ground-state energy in dependence of θ

• twist is introduced along rows in x direction.

CCM – Excited-State Formalism

• apply linearly an excitation operator X^e to the ket-state wave function:

$$|\Psi_e\rangle = X^e |\Psi\rangle = X^e e^S |\Phi\rangle, \quad X^e = \sum_{I \neq 0} \mathcal{X}_I^e C_I^+$$

• using Schrödinger equation $E_e |\Psi_e\rangle = H |\Psi_e\rangle$ gives for the excitation energy $\epsilon_e \equiv E_e - E_g$

$$\epsilon_e X^e |\Phi\rangle = e^{-S} [H, X^e] e^S |\Phi\rangle$$

• apply $\langle \Phi | C_I$

 \Rightarrow set of eigenvalue equations

$$\epsilon_e \mathcal{X}_I^e = \langle \Phi | C_I e^{-S} [H, X^e] e^S | \Phi \rangle \quad , \forall I \neq 0$$

CCM – Excited-State Formalism: application on spin systems I. Selection of X^e: classical spin state

$$\Rightarrow X^{e} = \sum_{i_{1}} \mathcal{X}_{i_{1}} s^{+}_{i_{1}} + \sum_{i_{1}i_{2}} \mathcal{X}_{i_{1}i_{2}} s^{+}_{i_{1}} s^{+}_{i_{2}} + \sum_{i_{1}i_{2}i_{3}} \mathcal{X}_{i_{1}i_{2}i_{3}} s^{+}_{i_{1}} s^{+}_{i_{2}} s^{+}_{i_{3}} + \cdots$$

- **II.** approximation of *X*:
 - similar to the ground state
 - but: choose confi gurations which change s_z^T by ± 1
 - use the same approximation level (e.g., LSUB*n*) as for ground state

Applications and Results

$J - J' \operatorname{model}$

 J = 1, J' > J: quantum competition; at J' = J'_s phase transition LRO ↔ dimerized paramagnetic phase with local singlets:

• J, J' different signs: frustration \rightarrow spiral state

known results with CCM:

- phase transition to the dimerized phase can be described by magnetization, gap, and spin stiffness
- frustrated region: quantum fluctuations favor *collinear* order PRB **61**, 14607 (2000); PRB **64**, 0244331 (2001)

J - J' model: new results with CMM

J = 1, J' > J, transition to the dimerized paramagnetic phase

 \bullet influence of the Ising anisotropy Δ

 $\mathbf{s}_i \mathbf{s}_j \to s_i^x s_j^x + s_i^y s_j^y + \Delta s_i^z s_j^z$

on the position of the quantum critical point J'_s :

 \rightarrow linear relation $J'_s(\Delta) \propto \alpha \Delta$ with $\alpha \approx 2.3 \dots 3.0$

R. Darradi, J. Richter and S.E. Krüger, J. Phys. Condens. Matter 16, 2681-2687 (2004))

influence of the spin quantum number s on the position of the quantum critical point J'_s:
 J'_s ∝ s(s+1)

increase of J'_s with $s \rightarrow$ diminishing of quantum effects

R. Darradi, J. Richter and D.J.J. Farnell, J. Phys. Condens. Matter 17, 341-350 (2005)

$J_1 - J_2 \mod$

- J = 1 -antiferromagnetic
- $J_2 > 0$ parameter, frustration
- at $J_2 = J_2^c$ frustration (together with quantum fluctuations) destroys LRO
 - \rightarrow quantum paramagnet (magnetically disordered phase)

J_1 – J_2 model: magnetization

- sublattice magnetization M versus J_2 obtained by CCM-LSUBn
- Néel LRO disappears at $J_2^c \approx 0.50$ with extr1, and at $J_2^c \approx 0.434$ with extr2
- new: up to LSUB10 with 29605 confi guration (using the code of Damian Farnell)

$$\operatorname{extr} 1 \equiv a_0 + a_1(1/n) + a_2(1/n)^2$$

$$\operatorname{extr} 2 \equiv a_0 + b_1 (1/n)^{b_2}$$

- at $J_2 = 1$ extr1 is better approximation
- at the critical point J_2^c extr2 seems to yield better results
- reason: scaling rules often change at a phase transition
 - \rightarrow use an approximation (extr2) with variable exponents Sven Krüger, CCM for quantum spins – p.16/23

J_1 – J_2 model: spin stiffness

- spin stiffness ρ_s versus J_2 obtained by CCM-LSUBn
- Néel LRO disappears at $J_2^c \approx 0.466$ with extr1. and $J_2^c \approx 0.374$ with extr2.

• again: extr1 better at $J_2 = 1$, extr2 better at $J_2 = J_2^c$

J_1 – J_2 model: gap

- Néel ordered state \leftrightarrow no gap
- quantum paramagnet \leftrightarrow gap

• \rightarrow Néel LRO disappears at $J_2^c \approx 0.34 \dots 0.42$

Conclusions: J_1 – J_2 model

- already known: ground state (energy, magnetization) Bishop, Farnell, Parkinson PRB **58**, 6394
- new results:
 - magnetization: CCM-LSUB10 extrapolation for calculating J_2^c
 - spin stiffness
 - gap
- with all three measures: transition from Néel LRO to quantum paramagnet (magnetically disordered phase) can be described \rightarrow approximation of J_2^c

Square lattice: magnetization

- CCM LSUB*n* approximation with $n = \{2, 4, 6, 8, 10\}$ and extrapolated results
- N_F number of fundamental confi gurations
- E_g/N GS energy per spin
- M sublattice magnetisation

	N_F	E_g/N	M/M_{clas}
LSUB2	1	-0.64833	0.84143
LSUB4	7	-0.66366	0.76480
LSUB6	75	-0.66700	0.72728
LSUB8	1287	-0.66817	0.70484
LSUB10	29605	-0.66870	0.68966
Extrapolated CCM	—	-0.66960	0.610
3rd order SWT*	_	-0.66999	0.6138
QMC**		-0.669437(5)	0.6140(6)

* Hamer et al. PRB **46**, 6276 (1992); ** Sandvik PRB **56**, 11678 (1997)

Square lattice: spin stiffness

	LSUBn	number eqs.	stiffness ρ_s			
	2	3	0.2574			
	4	40	0.2310			
• CCM:	6	828	0.2176			
	8	21124	0.2097			
	extr1	—	0.1812			
	method		$ ho_s$			
	LSWT		0.1912			
• comparison with	2nd SWT		0.1810			
other methods:	3rd SWT		0.1747			
	series exp).	0.182			
	exact diagon.					
	quantum	Mone Carlo	0.199			

 \rightarrow CCM in *excellent agreement* with the best results obtained by other means

Triangular lattice: spin stiffness

parallel stiffness, i.e., the spins are rotated by the twist θ within the plane of the system

	LSUBn	number eqs.	stif	fness $ ho_{s\parallel}$
	2	3		0.1188
	3	14		0.1075
	4	67		0.0975
• CCM·	5	370		0.0924
	6	2133		0.0869
	approx.	—		0.0585
		metl	nod	$ ho_{s\parallel}$
 comparison with 	exa	0.05		
other methods		0.080		
	Schwing	0.088		
		0.060		

 \rightarrow improved results by CCM (LSWT is to large)

Conclusions

- CCM leads to quite accurate results for quantum spin systems (ground state and fi rst excitation)
- qualitativly correct description of GS order-disorder transitions
- no problems with frustration and incommensurate spiral phases
- higher spin s > 1/2 also possible

some further things to do in high-order CCM:

- calculation of correlation function
- dimerized state as CCM ground state