SS 2020 05.05.20

Teil A

7. Clifford-Algebra

6 Pkt.

Betrachtet werden vier hermitesche $(N \times N)$ -Matrizen α^a , (a = 1, ..., 4). Die Clifford-Algebra wird definiert mittels folgender Antivertauschungsregeln:

$$\alpha^a \alpha^b + \alpha^b \alpha^a = 2\delta_{ab} \mathbb{1}_N$$
.

 $(\mathbb{1}_N)$ ist die Einheitsmatrix der Dimension N. In vereinfachter Notation könnte man sie auch weglassen.)

- (a) Zeigen Sie, dass die Matrizen α^a linear unabhängig sind (also dass das Verschwinden (2 Pkt.) einer Linearkombination $\sum_a c_a \alpha^a$ impliziert, dass alle c_a null sind).
- (b) Zeigen Sie, dass die Dimension N der antikommutierenden Matrizen α^a gerade sein (2 Pkt.) muss. Warum muss N=2 ebenfalls ausgeschlossen werden? Hinweis: Zeigen Sie zunächst, dass die Eigenwerte der Matrizen gleich ± 1 sein müssen. Zeigen Sie weiterhin, dass die Spur verschwinden muss, $\operatorname{Tr} \alpha^a = 0$.
- (c) Verifizieren Sie explizit, dass folgende vierdimensionale Darstellung die Antivertauschungsregeln erfüllt:

$$\alpha^i = \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0 \end{pmatrix}$$
, $i = 1, 2, 3$, $\alpha^4 = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}$

mit den Paulimatrizen σ^i .

8. Levy-Leblond-Linearisierung der Schrödinger-Gleichung

8 Pkt.

Die Schrödinger-Gleichung eines freien Teilchens

$$\left(i\hbar\partial_t + \frac{\hbar^2}{2m}\nabla^2\right)\psi = 0,$$

ist unsymmetrisch in bezug auf die Ordnung der Zeit- und Raumableitungen. Mit dem Ansatz:

$$(i\hbar a\partial_t - i\hbar b^k \partial_{x^k} + c)\psi = 0$$
,

der in den Raumableitungen linear ist, lässt sich diese Asymmetrie beseitigen. Die Koeffizienten a, b^1, b^2, b^3, c sind hierbei quadratische Matrizen und ψ dementsprechend ein Spaltenvektor. Man fordert, dass die Lösungen der linearen Wellengleichung zugleich Lösungen der Schrödinger-Gleichung sind.

(a) Sollen beide Gleichungen simultan gelten, dann muss es einen Operator der Form (2 Pkt.)

$$i\hbar \tilde{a}\partial_t - i\hbar \tilde{b}^k \partial_{x^k} + \tilde{c}$$

geben, der die lineare Wellengleichung wieder in die Schrödinger-Gleichung überführt:

$$(i\hbar \tilde{a}\partial_t - i\hbar \tilde{b}^k\partial_{x^k} + \tilde{c})(i\hbar a\partial_t - i\hbar b^k\partial_{x^k} + c) = 2m\left(i\hbar\partial_t + rac{\hbar^2}{2m}
abla^2
ight).$$

Musterlösung/Abgabe: 19.05.2020

Besprechung: 19.05.20

Der (willkürliche) Faktor 2*m* wird sich als zweckmäßig erweisen. Zeigen Sie durch Koeffizientenvergleich:

$$\tilde{a}a = 0$$
 $\tilde{a}b^k + \tilde{b}^k a = 0$ $\tilde{a}c + \tilde{c}a = 2m$ $\tilde{b}^k b^l + \tilde{b}^l b^k = -2\delta_{kl}$ $k, l = 1, 2, 3$ $\tilde{c}c = 0$ $\tilde{c}b^k + \tilde{b}^k c = 0$

(b) Sei d eine invertierbare Matrix ($dd^{-1} = 1$) und die α^{μ} ($\mu = 1, ..., 4$) definiert mittels: (2 Pkt.)

$$i\left(a + \frac{1}{2m}c\right) = d\alpha^4$$

$$i\left(\tilde{a} + \frac{1}{2m}\tilde{c}\right) = -\alpha^4 d^{-1}$$

$$b^k = d\alpha^k$$

$$\tilde{b}^k = -\alpha^k d^{-1}$$

Zeigen Sie, dass die Matrizen α^{μ} die Antivertauschungsregeln der Clifford-Algebra (siehe Aufgabe *Clifford-Algebra*) erfüllen.

(c) Wählen Sie
$$d = \left(\begin{array}{cc} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{array} \right).$$

Bestimmen Sie mit der Darstellung der Matrizen α^{μ} aus der Aufgabe *Clifford-Algebra* einen gültigen Satz von Koeffizienten $a, \tilde{a}, b^k, \tilde{b}, ^k c$ und \tilde{c} .

Hinweis: Eindeutige Lösungen erhält man etwa, wenn man ansetzt

$$a - \frac{1}{2m}c = -id$$
, $\tilde{a} - \frac{1}{2m}\tilde{c} = -id^{-1}$ oder $a - \frac{1}{2m}c = id$, $\tilde{a} - \frac{1}{2m}\tilde{c} = id^{-1}$.

(d) Zeigen Sie, dass mit dieser Konstruktion der Koeffizienten-Matrizen die Komponenten des Vierer-Spinors $\psi = (\psi_1, \psi_2, \psi_3, \psi_4)^T$ die Schrödinger-Gleichung erfüllen.

Die Lösungen zu den Aufgaben im Teil A werden zu dem unten genannten Termin hochgeladen.

Teil B

5. Vierer-Stromdichte aus Dirac-Gleichung

6 Pkt.

Wir betrachten eine Lösung der freien Dirac-Gleichung mit positiver Energie E und $\mathbf{p} = (0,0,p_z)$

$$\psi(z,t) = N egin{pmatrix} 1 \ 0 \ rac{cp_z}{E+mc^2} \ 0 \end{pmatrix} \mathrm{e}^{-rac{i}{\hbar}(Et-p_zz)}.$$

Hierbei ist N ein geeigneter Normierungsfaktor. Bestimmen Sie die dazugehörige Wahrscheinlichkeitsstromdichte $j=(j^{\mu})=c~(\psi^{\dagger}\alpha^{\mu}\psi),~\mu=1,2,3.$

Hinweis: Die α^{μ} sind gegeben durch $\alpha^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \sigma^{\mu} & 0 \end{pmatrix}$, wobei σ^{μ} die Paulimatrizen sind.

6. Lösungen Klein-Gordon- versus Dirac-Gleichung

4 Pkt.

Im feldfreien Fall ist jede Lösung der Dirac-Gleichung auch Lösung der Klein-Gordon-Gleichung. Man zeige durch ein Gegenbeispiel, dass die Umkehrung nicht gilt.

Im Teil B können **10 Punkte** erreicht werden. Die Abgabe der Aufgabe(n) bis zum unten genannten Datum bitte per Mail an **antonia.schulz@ovgu.de**.

Musterlösung/Abgabe: 19.05.2020

Besprechung: 19.05.20