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Another small lecture seems to be appropriate. Apparently, the idea is prevalent that the laws of
mechanics are expressible via a principle of least action, aka Hamilton’s principle. My statements
to the effect that the principle is actually one asserting only stationarity of the action, which
might as well have a saddle point or a maximum for the true trajectory, were met with disbelief
and attempts to invoke stability as a feature necessarily leading to a minimum of the action
being realized by the physical trajectory. The best way to show that this is wrong seems to
me to discuss an extremely simple counterexample, which in fact is just the harmonic oscillator.
Moreover, the idea that whenever we have a system where kinetic energy T and potential energy
V are defined, the Lagrangian L appearing in the definition of the action is given by L = T −V
will be shown to be wrong, too, again by a simple example.

Hamilton’s principle at work with the harmonic oscillator

Hamilton’s principle says that for a mechanical1 system fully described by a set of generalized
coordinates {qi, i = 1 . . . N}, the dynamics of the motion is such that the action given by

S(ti, tf ) =

∫ tf

ti

L ({q̇i}, {qi}, t) dt , (1)

where L is the Lagrangian of the system, has a stationary point with respect to small variations
about the true trajectory, i.e., the dynamical path (in configuration space) actually taken by the
system. The admissible variations are taken at fixed time which means that the variations of the
generalized velocities are the time derivatives of the variations of the generalized coordinates.
Moreover, the initial coordinates qi(ti) and the final ones qi(tf ) are the same for the varied
trajectories as for the physical one, i.e. the initial and final points are fixed and not subject to
variation.

Stationarity of the action, i.e., δS = 0, required for sufficiently small variations about the true
trajectory with the described boundary conditions, leads to the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1 . . . N . (2)

Note that no requirement about the second variation of the action has been made, and hence
the vanishing of the variational derivative of S can be due to the functional S having either a
minimum, a saddle point or a maximum. To see which may be the case, let us check an example.

Consider a one-dimensional harmonic oscillator. Its Lagrangian is given by

L =
m

2
ẋ2 − k

2
x2 (3)

i.e., we have a single coordinate x(t) describing the instantaneous amplitude of the oscillator.
The Euler-Lagrange equation from the principle of stationary action reads

d

dt

∂L

∂ẋ
− ∂L

∂x
= mẍ+ kx = 0 , (4)

1The principle was of course extended beyond mechanical systems to electrodynamics and essentially all other
fields of physics.
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which is the correct equation of motion of a harmonic oscillator with angular frequency

ω =

√

k

m
=

2π

T
, (5)

implying k = mω2. Let us take as initial time ti = 0 and as initial condition x(ti) = 0. For the
final time, we choose tf =

(
n+ 1

8

)
T , where n is a non-negative integer,2 and take as amplitude

x(tf ) = X. The solution of the equation of motion with these boundary conditions is easily
determined. Its general solution is x(t) = A sinωt+B cosωt. Then x(0) = 0 implies B = 0, and
the second boundary condition leads to

A =
X

sinωtf
=

√
2X , (6)

because sin
[
ω
(
n+ 1

8

)
T
]
= sin

[
2π
T

(
n+ 1

8

)
T
]
= sin π

4 =
√
2
2 . So the physical trajectory for the

boundary value problem is given by

x(t) =
√
2X sinωt , (7)

implying

ẋ(t) =
√
2X ω cosωt , (8)

and we may easily calculate the Lagrangian

L0 = mX2ω2 cos2 ωt− kX2 sin2 ωt = mX2ω2 cos 2ωt (9)

as well as the action

S0(tt, tf ) =

∫ tf

ti

mX2ω2 cos 2ωtdt =
m

2
X2 ω sin 2ωt

∣
∣
∣

tf

ti
=

m

2
X2 ω sin

[
4π

T

(

n+
1

8

)

T

]

=
m

2
X2 ω sin

π

2
=

π

T
mX2 , (10)

which happens to be independent of n. Is this a minimum? Let us compare it with the action
along a non-physical trajectory between the same initial and final points. Such a trajectory is
given, for example, by

x(t) = X
t

tf
⇒ ẋ(t) =

X

tf
, (11)

so the Lagrangian becomes

L1 =
m

2

(
X

tf

)2

− m

2
ω2X2

(
t

tf

)2

=
m

2

(
X

tf

)2
(
1− ω2t2

)
. (12)

This is easily integrated to give

S1(0, tf ) =
m

2

(
X

tf

)2 ∫ tf

0

(
1− ω2t2

)
dt =

m

2

X2

tf

(

1− 1

3
ω2t2f

)

, (13)

and it is obvious that for sufficiently large tf , this will become smaller than S0(0, tf ). We have

n = 0 : tf =
T

8
S1(0, tf ) = 4m

X2

T

(

1− 4π2

3T 2

T 2

64

)

= 4m
X2

T

(

1− π2

48

)

2I want to consider several possible end times for the trajectory, so n is not fixed yet.
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=
3.178

T
mX2 >

π

T
mX2 = S0(0, tf ) (14)

n = 1 : tf =
9T

8
S1(0, tf ) = 4m

X2

9T

(

1− 4π2

3T 2

81T 2

64

)

= 4m
X2

9T

(

1− 27π2

16

)

= −6.958

T
mX2 <

π

T
mX2 = S0(0, tf ) , (15)

and as n is increased this action will evidently become smaller and smaller with no lower limit.

These considerations show that, for n > 0, S0(0, tf ) is not the global minimum of the action
for trajectories between the two points x(ti) = 0 and x(tf ) = X. This in itself would not
render a principle of least action impossible, because the formulation of the principle requires
the trajectories used in the comparison to be small variations of each other, so it would only state
that there is a local minimum. What the principle states in reality is that the action of the true
physical trajectory is a stationary point in comparison with nearby (non-physical) trajectories.

Knowledge of a not so close trajectory that has a smaller action than the true trajectory is not
useless, however. In fact, we may exploit our result to construct nearby trajectories having a
lower action than the physical one in the case of sufficiently large time tf − ti, thus disproving
even local minimality.

To this end, call the physical trajectory x0(t) and let the trajectory described by L1 be x1(t).
Then consider the family of trajectories given by

x(t) = xδ(t) = (1− δ)x0(t) + δx1(t) , (16)

where δ is a (small) positive number. Clearly, for δ ≪ 1, x(t) gets as close to x0(t) as we
desire. Moreover, x(t) satisfies the initial and final conditions by construction. The Lagrangian
corresponding to this trajectory is

L =
m

2
ẋ(t)2 − m

2
ω2x(t)2

=
m

2

[

(1− δ)
√
2Xω cosωt+ δ

X

tf

]2

− m

2
ω2

[

(1− δ)
√
2X sinωt+ δ

Xt

tf

]2

= (1− δ)2L0 +m(1− δ)δ
√
2X2 1

tf

(
ω cosωt− ω2t sinωt

)
+ δ2L1 . (17)

In calculating the action, we might anticipate that the integral over the sum of the terms linear
in δ must vanish because of the stationarity of the action of the physical trajectory. However, I
will not make use of this and just proceed with the calculation. That the term linear in δ goes
away, will then serve as an additional check. The action is given by

S(0, tf ) = (1− δ)2
∫ tf

0
L0 dt+ δ2

∫ tf

0
L1 dt

+

∫ tf

0
mω(1− δ)δ

√
2X2 1

tf
(cosωt− ωt sinωt) dt

= (1− δ)2S0(0, tf ) + δ2S1(0, tf )

+ (1− δ)δ
√
2X2mω

tf

(

✟
✟
✟
✟1

ω
sinωt+ t cosωt−

✟
✟
✟
✟1

ω
sinωt

) ∣
∣
∣

tf

0

=
π

T
mX2 − 2δ

π

T
mX2 + δ2

π

T
mX2 + δ2

m

2

X2

tf

(

1− 1

3
ω2t2f

)

+
(
δ − δ2

)√
2mX2 2π

T
cos

(
2πtf
T

)

. (18)
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Now we have cos
(
2πtf
T

)

= cos
(
2π

(
n+ 1

8

))
= cos π

4 =
√
2
2 , which means that the terms linear in

δ of the first and second lines after the last equal sign of (18) cancel indeed.

We may then rewrite the result as follows:

S(0, tf )− S0(0, tf ) = −δ2mX2 1

T

[

π − 1

2n+ 1/4
+

2π2

3

(

n+
1

8

)]

. (19)

Whenever this change of action from the physical trajectory to the modified one is negative, the
physical action is not a minimum (it must then be a saddle point or a maximum, because to
linear order in δ the action remains unchanged). The sign of its change is decided by the term
quadratic in δ. Let us check a few cases:

n = 0 : S − S0 = −δ2mX2 1

T

[

π − 4 +
π2

12

]

= 3.594× 10−2δ2mX2 1

T
> 0 (20)

n = 1 : S − S0 = −δ2mX2 1

T

[

π − 4

9
+

3π2

4

]

= −10.10× δ2mX2 1

T
< 0 (21)

n = 2 : S − S0 = −δ2mX2 1

T

[

π − 4

17
+

17π2

12

]

= −16.89× δ2mX2 1

T
< 0 (22)

So we find that the action of the physical trajectory may be a local minimum, if tf − ti is smaller
than a period of the oscillator, but is not a local minimum with certainty, if that time difference
becomes too large, and too large means already larger than a single period.

As it turns out, this is a general pattern. Whenever the action has the form considered here,
i.e., L = T − V , then it is indeed a local minimum, if the time interval between the endpoints
of the trajectory is sufficiently short, and it is only a saddle point, if that time interval becomes
too large. The condition for “sufficiently short” is that the final spacetime event occurs before
a so-called kinetic focus event of the trajectory. There is an interesting article discussing this
in some detail on http://www.scholarpedia.org/article/Principle_of_least_action. In
this article, also a nice argument is given why with a Lagrangian of the form T −V the physical
trajectory can never correspond to a localmaximum. Suppose you leave the trajectory unchanged
at its ends but add a piece to it “in the middle” that has a very small amplitude but oscillates
strongly, a function of the type f(t) =

√
α sin t

α , say, with α ≪ 1, leading to f(t) ≪ 1 but

ḟ(t) = α−1/2 cos t
α 6≪ 1. This means that the modified trajectory has about the same potential

energy as the true physical one (because positions were not changed much) but a much higher
kinetic energy (because velocities did change strongly), hence it must have a larger action. Since
there is always a larger action for a nearby trajectory, the action of the physical trajectory
cannot be a maximum. It must be a saddle point, unless it is a minimum. Note that in the case
of the harmonic oscillator, the number of trajectories corresponding to saddle points exceeds
those corresponding to minima by any measure that assigns larger weight to an infinite time
interval than to a finite one.

In relativity, often the action is taken to be given by mc2τ , a multiple of the proper time. The
factor mc2 is unimportant although it will give the right dimension to the action. Now, in the
limit of small velocities and small gravitational fields, this action reduces to the Newtonian one
up to a negative factor and a constant shift. Therefore, that relativistic action is a maximum

for sufficiently short trajectories and may be a saddle point for longer ones, but it can never be
a minimum. Hence, the notion of a “principle of least action” is particularly problematic in the
relativistic case.

Since I have given only a particular case of the transition from the relativistic action to the
Newtonian one in a preceding answer to Stefano Quattrini here on Research Gate, let me indicate
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the general case now. For weak gravitational fields and small velocities the metric may be written
(φ is the Newtonian gravitational potential):

ds2 = c2dτ2 = c2
(

1 + 2
φ

c2

)

dt2 − dr2 − r2
(
dϑ2 + sin2 ϑdϕ2

)

= c2
(

1 + 2
φ

c2

)

dt2 − dx2 − dy2 − dz2 . (23)

The identification of ds2 with c2dτ2 is of course possible only for time-like line elements. Note
that if we just take the limit of the Schwarzschild metric for small gravitational fields, we

will have, in the first line,
(

1− 2 φ
c2

)

dr2 instead of dr2. But for small velocities, we can drop

the potential term before dr2, because we have 2 φ
c2
dr2 = 2 φ

c2

(
dr
dt

)2
dt2 ≪ 2 φ

c2
c2dt2, assuming

(
dr
dt

)2 ≤
(
dr
dt

)2 ≪ c2. Setting the action functional equal to mc2τ , we have

S(ti, tf ) = mc2 (τf − τi)

= mc2
∫ tf

ti

{

1 + 2
φ

c2
− 1

c2

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]}1/2

dt

≈ mc2
∫ tf

ti

[

1 +
φ

c2
− 1

2c2

(
dr

dt

)2
]

dt

=

∫ tf

ti

[

mc2 +mφ− m

2

(
dr

dt

)2
]

dt =

∫ tf

ti

[
mc2 + V − T

]
dt

= mc2(tf − ti)− Sclassical(ti, tf ) . (24)

The first term3 does not change under variations of the trajectory, so this definition of the action
gives the same equations of motion as the pre-relativistic approach. However, the relativistic
action is either a maximum or a saddle point for true trajectories (and never a minimum).

What I have shown here, by way of an example, is that the label “principle of least action” is
a misnomer. Moreover, the minimization of the action is not a stability requirement. Otherwise
we would have to assume that a single oscillation of a harmonic oscillator is stable but all
additional oscillations are unstable, a very strange statement indeed. In fact, we have good
approximations of harmonic oscillators at our disposal that display stability of their motion for
hundreds and thousands of periodic repetitions. The truth is that the question of whether the
action is a true minimum or just a saddle point has nothing to do with stability. This kind
of stability considerations is appropriate in thermodynamics where we have statements about
the convexity or concavity of energy functionals (the internal energy is a convex function of its
natural variables, the entropy a concave one), but not in the case of the action principle.

Other forms of the Lagrangian

Another idea I would like to debunk is the statement that whenever we have well-defined kinetic
energy T and potential energy V of the systen, the Lagrangian is given by L = T − V . Again a
simple example may be used to show that this is false in general.

3The additive term mc2 could be viewed as a modification of the potential energy required by relativity. Then we
would still have Lclass. = T − V , but with the modified potential. And we would have S = −

∫
Lclass.dt.
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Consider a charged particle (with charge q) in an electromagnetic field. Let us first note, for the
purpose of later use, the relationships between the electromagnetic fields and their potentials:

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
, B(r, t) = ∇×A(r, t) . (25)

The kinetic energy of the particle4 is T = m
2 ṙ

2, its potential energy is V = q Φ(r, t), the magnetic
field not contributing to it. Let us then set up the Lagrangian

L̃ = T − V =
m

2
ṙ2 − q Φ(r, t) (26)

and check what we find as equations of motion.

∂L̃

∂ẋi
= mẋi ,

∂L̃

∂xi
= −q

∂Φ

∂xi
, i = 1 . . . 3 , (27)

from which we get the Euler-Lagrange equations

Fi = mẍi = −q
∂Φ

∂xi
= q

(

Ei(r, t) +
∂Ai(r, t)

∂t

)

. (28)

Is this the correct form of the Lorentz force? Only in the absence of a magnetic field. In that
case, we may take A = 0 and Eq. (28) reduces to F = qE which is the correct electrostatic
limit.

However, for a general electromagnetic field (28) is not the correct force expression. We know
that the Lorentz force is given by

Fi = qEi + q (ṙ ×B)i , (29)

Fi = q

[

− ∂Φ

∂xi
− ∂Ai

∂t
+ ẋk

(
∂Ak

∂xi
− ∂Ai

∂xk

)]

, (30)

where we have used the Einstein summation convention in the component form and employed

(ṙ ×B)i = ǫiklẋkǫlmn
∂An

∂xm
= (δimδkn − δinδkm)ẋk

∂An

∂xm
= ẋk

(
∂Ak

∂xi
− ∂Ai

∂xk

)

. The force given by

Eq. (30) is clearly different from that described by Eq. (28).

Nevertheless, there is a Lagrangian for a particle in an electromagnetic field and its equations
of motion follow from Hamilton’s principle, i.e., the standard action principle. That Lagrangian
is given by

L =
m

2
ṙ2 − q Φ(r, t) + q ṙ ·A(r, t) . (31)

From this, we obtain the canonical momentum

pi ≡
∂L

∂ẋi
= mẋi + qAi ,

p = mṙ + qA(r, t) , (32)

i.e., the canonical momentum is different from the kinetic one, which is given by pkin = mṙ. In
fact, it is defined only up to a gauge degree of freedom, since we can choose the divergence of A
freely, so the second summand is not fixed before fixing the gauge. Note that it is this canonical
momentum which enters the Heisenberg uncertainty relations after quantization. Contrary to it,
the kinetic momentum is well-defined and directly measurable.

4We consider the non-relativistic limit of small velocities.
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Let us check on the equations of motion following from the action principle with L given by
Eq. (31). We have ∂L

∂xi
= −q ∂Φ

∂xi
+ q ṙ · ∂A(r,t)

∂xi
, whence

0 =
d

dt

∂L

∂ẋi
− ∂L

∂xi
= mẍi + q

dAi

dt
+ q

∂Φ

∂xi
− q ẋk

∂Ak

∂xi

= mẍi + q
∂Ai

∂t
+ q ẋk

∂Ai

∂xk
+ q

∂Φ

∂xi
− q ẋk

∂Ak

∂xi

= mẍi − q

[

− ∂Φ

∂xi
− ∂Ai

∂t
︸ ︷︷ ︸

Ei

+ ẋk

(
∂Ak

∂xi
− ∂Ai

∂xk

)

︸ ︷︷ ︸

(ṙ ×B)i

]

= mẍi − Fi . (33)

Obviously, this Lagrangian leads to the correct equations of motion and reproduces the Lorentz
force. It is however not given by T − V , rather we have L = T − V ∗, where

V ∗ = q Φ(r, t)− q ṙ ·A(r, t) (34)

is a so-called generalized potential. A generalized potential may be velocity dependent and its
defining property is that the force can be calculated from it according to

Fi = −∂V ∗

∂xi
+

d

dt

∂V ∗

∂ẋi
. (35)

Note that the Hamiltonian does not contain V ∗ but rather V . The Hamiltonian is defined, as
usual, via a Legendre transformation of the Lagrangian:

H = p · ṙ − L = (mṙ +✟
✟qA) · ṙ − m

2
ṙ2 + q Φ−✘✘✘✘q ṙ ·A =

m

2
ṙ2 + q Φ , (36)

and this is obviously the total energy, so H = T +V .5 Hence, we can say that we have a system
with energy conservation, in which kinetic and potential energy can be formulated and the
Hamiltonian is given by their sum. Nevertheless, the Lagrangian is not given by their difference.

Finally, it should be mentioned that L = T −V ∗ is not the most general expression for a Lagran-
gian. Neither is the standard form of the relativistic Lagrangian for a particle in a gravitational
field of this form,6 nor is the Einstein-Hilbert action7 an integral over a Lagrangian (density) of
this particular form. In field theory, the form of Lagrangian densities is often postulated from
symmetry arguments and the equations of motion are then obtained without a direct identifica-
tion of kinetic energy and potential energies. A Hamiltonian density can then be derived and it
typically allows to identify analogs of the kinetic and potential energies.

5To use the Hamiltonian equations of motion, we would rewrite it in terms of p and r, i.e. H = 1

2m
(p− qA)2+q Φ.

6I don’t know how to rewrite the relativistic action, i.e., the proper time (times mc2), as an integral of the difference
between kinetic energy and generalized potential, except in the limit of weak fields and small velocities.

7From which the field equations of general relativity are derived.
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