The Hong-Ou-Mandel experiment and Bohmian mechanics
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Here comes my discussion of the Hong-Ou-Mandel experiment. | will actually use very few equations,
because a good visualization in configuration space will mostly clarify the issue.

So here is a picture to clarify my coordinate system in space and time.

A : :

z=0t——>

to v

Ly

Figure 1

Now this picture is of course gleaned from a description of the Hong-Ou-Mandel experiment with
photons. In fact, | would like to discuss the photon case, which is easy in standard quantum
mechanics, but unfortunately, there are no formulas for the velocities of Bohmian particles, if the
system consists of photons. Worse, | would not know how to derive them, because the relativistic
Hamiltonion essentially would be a square root of a negative Laplacian, and | have no idea how to
extract a divergence from that, in order to define a probability current. Using the massless limit of
the Klein-Gordon equation, i.e., the wave equation instead, does not help either, because it is known
that one cannot define a proper probability current for that equation.

In the atom case, the particle trajectories will be parabolic in the lab frame, not straight lines.
Nevertheless, | argue that the picture can still be used. Just describe the experiment in a freely falling
frame, then the atom trajectories will be straight lines. Moreover, the Schrodinger equation will hold
in the freely falling frame to a better approximation than in the lab, because of the equivalence
principle, telling us that if the frame is sufficiently small, we can forget about the influence of gravity.

In the original drawing, the rectangle depicted a beam splitter for photons, in the atom case, it
should be seen as a symbolic representation of the moving optical lattice, used to make the atoms
interfere. In addition, the picture suggests a symmetry that one might not suspect when viewing
the experiment from the lab frame and that might be invoked against Bohmian mechanics. Since
Bohmian mechanics will be shown to work with this symmetry, it will work all the better without it.

The interference region of the two atoms is put at the origin of the (moving) coordinate system, i.e.,
we measure positions relative to the interference zone.

Two identical bosonic atoms are released at some negative x value at time t_1, they interact with
the optical lattice near (z,y,z) = (0,0,0) at time to, interfere and emerge on one side both in



the same single-particle state. | have drawn them to move upward, but they could eqally well have
gone downward. Their wave function will be considered at times t_1, tg, and ¢;, some time after
interference.

As preliminaries, let us have a look at the symmetry properties of the wave function. First, it must
describe two indistinguishable bosons starting from different positions, which means it must be an
entangled state that is symmetric under particle exchange:
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The state after having passed the interference region could in principle be a product state, because
now both bosons are in the same single-particle state, but due to the fact that the wave function
must describe both possibilities of the bosons emerging at positive z values and at negative z values,
it will still be a superposition of two different product states, i.e., the entanglement will continue
until the photons are measured.

Another symmetry property of the wave function that could be assumed due to the symmetric setup
and symmetric initial conditions, is symmetry with respect to reflection at the z = 0 plane.!

U(z1,y1, 21, X2, Y2, 22, 1) = Y(x1, Y1, —21, T2, Y2, —22, 1) . (2)

Note that reflection changes the sign of both z arguments of the wave function. In configura-
tion space, this symmetry corresponds to a simultaneous reflection of two coordinates, keeping the
(z1,y1) X (z2,y2) “hyperplane” invariant. It is useful to immediately have a look at the consequences
for the Bohmian particle velocities. We have
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If ¢ were a product state, the velocity of particle £ would not depend on the position of the other
particle, because the logarithm would be a sum of terms each depending only on the variables of a
single particle, and the gradient with respect to its position variables would make the summands of
all but particle k£ vanish. But since it is an entangled state, we do not have this simplification. The
velocity of particle 1 depends on where is particle 2, and vice versa.

Let us consider what we are able to deduce about velocity components in the z direction from the
symmetry (2):
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from which we conclude that the z velocity component of particle 1 becomes zero on the plane z = 0,
if particle 2 is at z = 0 as well, because then we have 09)(. .5 0,...,0,t) = —vgl)(. .5 0,...,0,1).
Hence, we may infer that both particles cannot cross the z = 0 plane simultaneously. But if one of

Yn a freely falling, i.e., local inertial frame.



them is not in the z = 0 plane, while the other hits that plane, the first particle will not encounter any
problems passing the plane. The presence of a second particle reduces the effect of a symmetry plane
from preventing all trajectories from passing the plane to preventing only a minority (of measure
zero!) from doing so.

In the following, | would like to first discuss the behaviour of the two-particle wave function in config-
uration space. This is standard quantum mechanics and should not give rise to strong disagreement.
Since | cannot easily draw a six-dimensional space, let us first get rid of uninteresting aspects. As-
suming the motion to happen primarily in the xz plane, the extension of the wave function in the
y directions will not display any interesting behaviour. The projection of the wave function on the
y1y2 plane will essentially be a blob about the origin that slowly spreads. For the times considered
here, it may even be possible to assume it constant. Similarly, the 12 plane will not be particularly
interesting. Again just a blob, now moving at constant velocity along the bisector of the plane
(and slowly getting wider). Therefore, we may focus attention on the two-dimensional subspace
constituted by the z1zo plane. And two dimensions are very appropriate for drawings.

Consider the picture on the right-hand side. This is a t,
representation of the wave function at the initial time

t_1, a projection on the z1zo plane. The green blobs are AN Z, 7
to correspond to regions containing a substantial part @ .
of the total probability of particle detection, if a position . ,
measurement were being performed. Let us say, the black N 7
boundary of the blob corresponds to a contour line of N .
the probability density, so that in its interior, 99% of the AN 2
probability are captured. Since the initial state consists of T
one particle at a negative z value and the other one at the P N
opposite positive one (approximately), the blob must be . N
roughly centered on the second bisector of the coordinate . AN
axes. Also, there must be two blobs, one on each side .7 @
of the first bisector, because of the indistinguishability of 7

the atoms, requiring symmetry of the (projected) wave
function with respect to the first bisector. Figure 2

To begin with, we restrict ourselves to the behaviour of

the wave function. How will it move? Of course, the t0
two blobs will move towards the origin along the second N z, A ,
bisector. The will become wider in the course of the N /
motion which is not drawn, because the experiment can AN .
be so set up that this broadening is small. s ,
When the wave packets reach the interference region at . 7
to, they essentially merge in a single blob (which will not NS /

be significantly larger than each of the original ones, it vy
still contains 99% of the probability). .7 .
Since we know from quantum mechanics that the two 7 .
particles must emerge on the same side of the z = 0 ’ N
plane, the wave packet must continue its way along the . AN
first bisector. Due to the existence of both possibilities, . N
the two atoms being able to emerge both above and ’
below the optical grating, there must be two blobs again,

see Figure 4.

Figure 3



This image shows the situation at about ¢;. Note that

if the two other possibilities were quantum mechanically .
possible, viz. particle 1 emerging in the positive z . @
channel and particle 2 at negative z and vice versa N ,
(particle 1 appearing at negative z values and particle . /
2 at positive ones), then our wave packet would have AN .
had to split into four pieces after interference, two s ,
moving out along the first bisector and two mov- 4 >
ing out along the second bisector (i.e., moving back ’ N Zq
to where the wave packets came from before interfering). . AN

| hope so far everything is uncontroversial. This should 7 N
be the qualitative behaviour of the wave function in con- @ AN
figuration space, according to standard quantum me- . AN
chanics. As we shall see, we can learn a lot from this
behaviour. Figure 4

Now, Bohmian mechanics consists of two sections. One describes the wave function — by the same
Schrodinger equation as standard quantum mechanics. So the wave function must behave precisely
the same way in Bohmian mechanics as in standard non-relativistic quantum mechanics. The second
section describes the dynamics of particles, to which we turn now.

The first thing to note is that all Bohmian particles together correspond, at a given time, to a single
point in configuration space. The spatial trajectories of Bohmian particles become a single curve
in configuration space (with an equation of motion that is even local in that space). In our case,
configuration space is six-dimensional and the trajectory is a path in that six-dimensional space. At
any fixed time, the projection of the six-dimensional point representing the two Bohmian particles
onto the z129 plane is a single point.

The range of positions where this point can be located in our final figure is given by the two blobs
— the Bohmian point must be in there with 99% probability. However, the locations where it can be
according to this argument are in the first and third quadrants only, around the first bisector. This
means that both Bohmian particles must be on one side of the z = 0 plane. If they were on different
sides, their representative point would have to be in the second or fourth quadrant! So the wave
function already tells us that the Bohmian particles must both have similar trajectories and velocities
after the interference region.

To see this in more detail, let us follow some particular Bohmian particle pairs. | have drawn three
of them in Figures 2 through 4. There is a cross, a square and a circle in Figure 2. The cross
and the square are off the second bisector (but of course still within the wave function), the circle
is precisely on it, i.e., it corresponds to a pair of Bohmian particles who have exactly opposite z
positions. Moreover, | have assumed for this particular pair that both partners have the same x and
1y positions — otherwise there would be no guarantee that the pair would move exactly along the
second bisector. Because the motion of one particle depends on the position of the other according
to Eq. (3), particles with different z or y positions will not move symmetrically along the z direction,
even if started from symmetric z positions. But let us assume, that for this particle pair, all the
symmetry conditions are satisfied.

For the particle pair symbolized by a cross, particle 1 is at negative z in Fig. 2, particle 2 has positive
z. In Fig. 3, particle 1 has crossed over to positive z. It had no problems crossing the z = 0 plane
(i.e., the z9 axis in the picture), because z2 was nonzero all the time. Only simultaneous crossing is
forbidden by symmetry. The two particles then both go on to the positive z side (Fig. 4).



For the particle pair symbolized by a square, particle 1 is at positve z and particle 2 at negative z.
Particle 2 crosses over to positive z around time ¢y and both particles follow the wave packet that
moves up and to the right along the first bisector.

Now for the particle pair depicted by a circle. Having assumed all the required symmetries, these two
particles will have to follow the second bisector, meaning they will approach the origin. Since their z
component of the velocity goes to zero, they will not be exactly there at tg. They will never exactly
reach the point, their trajectory has separatrix character. Hence, these two Bohmian particles will
not be able to follow the wave packet up the first bisector. Therefore, | have still drawn them at
the origin in Fig. 4. Is this in contradiction to standard quantum mechanics? Sure. But it does not
have measurable consequences. For this to happen, two coordinate pairs of the Bohmian particles
must agree and the third be opposite to each other. So the coordinates of all the Bohmian particles
satisfying such a condition form a three-dimensional set. But the coordinates of the full ensemble of
Bohmian particles make up a six-dimensional set. Thus, the first set has zero probability measure.
A three-dimensional subset of a six-dimensional set with finite probability measure must always have
zero measure, if no ¢ functions occur.? Therefore, the probability for a pair of Bohmian particles to
come to rest on the z = 0 plane is zero. While a single counterexample may destroy a theory, this
statements holds true only for counterexamples that can be made to happen with finite probability.
If there are no experimentally detectable consequences, the counterexample does not work.

Note that the Bohmian particles are “metaphysically” distinguishable, because the equations tell
us, deterministically, which particle has followed which trajectory. So if we knew the initial position
of a particle, we could identify it forever, by following its trajectory. However, physically Bohmian
particles are as indistinguishable as standard quantum mechanical ones. We have no way of knowing
the initial position of a Bohmian particle. All the — verifiable — predictions of probabilistic nature
are derived from the wave function in Bohmian mechanics, and the wave function has the symmetry
property implying indistinguishability. On the other hand, all the deterministic predictions of Bohmian
mechanics about particle positions, etc., are not verifiable, including distinguishability.

°The occurrence of & functions would lead to illegitimate, because non-normalizable wave functions.



