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About two weeks ago, Stefano Quattrini published a one-page exposé “Breaking the Lorentz
invariance”, in which he claims to demonstrate Lorentz invariance to be broken in a variant of
the scenario of the accelerating twins discussed by Boughn [1]. Quattrini’s analysis is incorrect
and the reason is the same as with so many other insufficient discussions of special relativistic
paradoxes: lack of appreciation of the relativity of simultaneity and its consequences.

There is not only one error. Quattrini uses a formula for the time difference between the age
of the two twins that is valid only, if their acceleration is stopped at the same time in the
inertial system, in which they originally were at rest. His stopping procedure will not achieve
this, hence the formula for the time difference used by him is wrong. But this is only a minor
objection.

The main issue is that with his stopping procedure the minimum stopping time is not deter-
mined by the leading twin but by the trailing one and therefore the paradox dissolves. The
same is true if an appropriate stopping procedure different from Quattrini’s is devised that
makes Boughn’s formula exact.

Moreover, if stopping is made at one time in either of the twins’ frames,1 then the twins will
not move at the same velocity after the switch-off of their engines. It is even possible (and no
contradiction at all) that the trailing twin never starts his journey in this case.

Minkowski diagrams

Before considering the proposed scenario, I would like to first revisit Boughn’s identically
accelerated twins using Minkowski diagrams.

It is obvious that the Boughn paper has not been understood by many. To some extent this
may be due to the fact that he uses language that may confuse rather than clarify, even though
technically, he does not commit any major error. When I first read the Boughn paper, I was
ready to write a comment, pointing out this slight abuse of language. But then I saw the paper
had appeared in 1989 already, more than 20 years before I read it, so it was probably pointless
to comment on it. In fact, a comment had been published two years after [2], and a very
nice exposition of the kind of different narratives that special relativity implies for different
observers was given in 1996 by Price and Gruber [3] (who have teamed up for other useful
articles on relativity [4] in the Americal Journal of Physics).

The problem with Boughn’s language is the following: he keeps talking about “identically
accelerated twins” without emphasizing in which frame the twins are identically accelerated.
Now it turns out that in the frame, where the twins are identically accelerated (the parents’
frame) they age at the same rate, whereas in the frame(s), in which they do not age at the
same rate, they are not identically accelerated. Stated like this, Boughn’s result might have
looked much less surprising, and maybe that is the reason for his avoiding to point out that
in the final frame the twins were not identically accelerated.2 Or else he simply did not see it.

In any case, a nice qualitative discussion of the situtation with onla very few formulas (and
simple ones) is possible using Minkowski diagrams. I will first give an explanation of the

1I will discuss below how to achieve this.
2Contrary to Newtonian mechanics, acceleration is not invariant under a change of inertial frame.
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original problem described by Boughn and then continue with a consideration of the Quattrini
argument. In Fig. 1, the x ct coordinate system is the frame P of the parents who stay at rest
in an inertial system. The blue curves are the world lines of the twins, Dick (left) and Jane
(right), who start to get accelerated at t = 0, accelerate until time t2 and then switch off their
engines, coasting at the same velocity afterwards. As usual in relativity (and for a reason!),
the time axis is actually taken to be labeled by ct. World lines of massive objects must then
have a slope exceeding one, and the slope is the inverse of the velocity, measured in units of
c, i.e., v/c. So Dick’s and Jane’s world lines become straight lines after t2 again, but now are
tilted at an angle ϕ satisfying tanϕ = c/v, v being their final velocity.
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Fig. 1: World lines of the identically accelerating twins.

Identical acceleration of the twins means that the two world lines are the same curves up
to a horizontal shift. Since the proper time of each twin is given by an integral τ − τ0 =
∫ t

t0

√

1− v2

c2
dt′ and v is the same for both twins at the same time t, it is clear that the twins

have the same age at certain corresponding events. For example, Jane has the same age at
event a1 on the figure as Dick at event a2, and Jane has the same age at event c1 as Dick at
event c2, etc. For all drawn pairs of events, Jane has the same age at event . . . 1 as Dick at
event . . . 2. And this is a relativistically invariant statement! In the frame P , events a1 and
a2 are at the same time, as are b1 and b2, etc. This is the meaning of the statement that the
twins age at the same rate in the parents’ frame. They do not necessarily age at the same
rate in other inertial frames, as these do not have to agree that, say, a1 and a2 happen at the
same time. Hence, Jane and Dick would have the same age at different times in such a frame,
meaning that they cannot have the same age at the same time.

We can further embellish the diagram by including the frames of Dick and Jane at some points.
In general, we consider as frame of either twin a locally comoving inertial frame. As I will
discuss shortly, such a frame can be constructed easily by purely graphical means. This is
done in the next picture, Fig. 2.

The comoving frame of Dick is called B during his acceleration phase and C in the final state,
wheras A is a comoving frame of Jane during her acceleration phase and C ′ is the final inertial
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system of Jane. We shall see later that C and C ′ can be identified with a common inertial
system of Dick and Jane late enough into the course of the scenario, while B and A cannot.
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Fig. 2: Minkowski diagram for the identically accelerating twins.

Coordinate systems describing the local frames have been drawn along each of the world lines.
How do we get them without calculation? The time axis is easy. It must be tangent to the
world line. Next we can draw the world line of a light ray sent from the origin of the local
coordinate system in the x direction. It must have slope 1 (i.e., 45 degrees) in the x ct diagram,
because light sent under these conditions simply satisfies x = x0 + c(t − t0). World lines of
light sent along the x or −x direction are always parallel to the first or the second bisector in
a Minkowski diagram. But in the local frames, light moves at speed c, too. And if their time
axes are taken to be c times a time coordinate, a light ray must follow a bisector in the local
frame as well. But that means that we can very easily construct the x axis of the local frame,
just by doubling the angle between the time axis and the world line of light (this is explicitly
shown in Fig. 2 for one of the angles, called α).

The fact that the x axes of the local frames are not parallel to the x axis of the frame P
straightforwardly expresses the relativity of simultaneity. In each of the local frames, lines of
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equal time are given by parallels to their x axis. Since the local x axis is tilted with respect to
the x axis in P , it is clear that we do not have the same notions of simultaneity. For example,
the event a2 given by the intersection of the line t = t1 with Dick’s world line is simultaneous
with the event a1 given by the intersection of the same line with Jane’s world line in the
parents’ frame. As we have argued before, both twins have aged by the same amount of time
at these two events, meaning they have the same age at the same time, t = t1, according to
the parents. However, the same event a2 is, in Dick’s frame (who reads the time t′ = t′

1
off his

clock) simultaneous with the intersection a′1 of the prolongation of Dick’s x axis (displaying
coordinate x′) with Jane’s world line. These two events have the same time t′ = t′

1
according

to Dick. But at the point a′1 of Jane’s world line, her velocity is higher than Dick’s (because
its slope is smaller than that of Dick’s world line at the origin of his x axis). So she must
move away from him. Moreover, she will not agree that this event is simultaneous with the
time t1 of their parents. Rather, she finds that the intersection of t = t1 with her world line
is simultaneous with a point at her time t′′ = t′′

1
on Dick’s world line, given by the backward

prolongation of her x axis to its intersection with Dick’s world line. In our drawing, that
time was even before Dick started to accelerate!3 Since the x axis of Jane’s comoving inertial
system will, at all times of her acceleration period, intersect with Dick’s world line at points
where the latter has a larger slope than Jane’s world line at the point, from which the x axis
was drawn, Jane will find that Dick is always slower than she herself. So she will agree with
Dick that their distance is increasing.

Another thing that can be immediately seen from the diagram is that the stopping time t2
corresponds to a time t′

2
for Dick, at which he finds that Jane has already stopped quite some

time ago, because she is “right now” at the event b′1 corresponding to his time t′
2
on her world

line. On the other hand, Jane will, when she is stopping, at her time t′′
2
, consider Dick still

being in his acceleration phase (at b′′2, corresponding to her time t′′
2
on his world line). Note

that numerically t′
2
= t′′

2
– these are times measured in different local frames.4 To obtain the

age difference some time after the switching-off of their engines, we need the time differences
as measured by one of the observers in his or her local frame. Only if they are at rest with
respect to each other, will they agree on their age difference. But this is the case for Dick after
event b2 and for Jane after event b′1. So, one way to obtain the age difference is to calculate
the time difference between the events b′1 and b1 in frame C, referring to the known times
and positions in the parents’ frame.

Let us denote by x2 Dick’s position at event b2, in the frame P . He is sitting at x′ = 0 by
definition and his time is t′

2
. Then, the Lorentz transformation between frames C and P reads

(

γ = 1/
√

1− v2

c2

)

:

t′ − t′2 = γ
(

t− t2 −
v

c2
(x− x2)

)

,

x′ = γ (x− x2 − v(t− t2)) . (1)

At t = t2 and x = x2, we obviously have t′ = t′
2
and x′ = 0. But we can also calculate the time

and position, in Dick’s frame, of the event t = t2 and x = x2 + H, corresponding to Jane’s
switching off her engine. We find

t′ − t′2 = t̃′2 − t′2 = γ
(

t− t2 −
v

c2
(x− x2)

)

= −γ
vH

c2
,

x′ = γH . (2)

3I will come back to that point later, as it may confuse people.
4And of course, t′1 = t′′1 .
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So the distance in frame C has increased from the original distance H to γH, and the age
difference of the twins will be t′

2
− t̃′

2
= γ vH

c2
. Note that it is Jane who is older, because the

event b1 that happens at time t̃′
2
in Dick’s frame, happens at time t′′

2
= t′

2
> t̃′

2
in her frame,

as the times at which both twins switch off their engines are the same in their respective local
frames. So Jane’s age at t′

2
(in Dick’s frame) is by t′

2
− t̃′

2
larger than t′

2
. Note that the twins

agree on their age difference, as soon as agree on both their engines being switched off, which
is above the x axis of C at the intersection point with the t2 line (b2) . Below that line, Jane
will not consider C ′ and B (which corresponds to C before event b2) to move at the same
speed. Later, the C and C ′ inertial systems can be identified, their only difference being a
constant offset in temporal and spatial coordinates.

But this also shows that earlier on the world lines, the inertial systems B and A can never be
identified (except at the time when they have velocity zero). For Dick always will find that
Jane has a larger velocity at any time in his comoving inertial system than he himself (the
intersection point of his x axis is always at a later proper time on Jane’s world line than on
his). Jane will always find that Dick has a smaller velocity than she herself (the intersection
point of her x axis is always at an earlier proper time on Dick’s world line than on hers).
Since their velocities are different, they never share a common inertial system in which they
would be both at rest, as long as one of them is accelerating. Only before they have started
their acceleration period (and agree on neither of them having started yet) and after they have
stopped it (and agree on both having stopped) can they be at rest in a common inertial system.
Clearly, while they accelerate, both will find that the other is accelerating at a different rate,
so they are not identically accelerating!

It should also be noted that the time dilation that arises here is not quite of the same kind as
the time dilation typically discussed when comparing observers in inertial frames of reference
moving with respect to each other. There we have mutual time dilation, i.e., each of the
observers finds the other to have a slower clock rate than they have themselves, and the effect
depends on v2/c2. Here, the situation is different. We can read off the diagram that the reason
for the faster aging of Jane is simply that the x axis of Dick turns upward and gets steeper
and steeper as he accelerates. This means that points that are simultaneous with his clock
ticks move upward on the world line of Jane, so correspond to later times on her clock. This
effect is essentially linear in v/c.5 Since Dick is behind Jane, her x axis turns downward with
increasing velocity,6 hitting earlier times on his world line than on hers. So he ages more slowly
than she does. In fact, it is possible for him to age backwards, as the picture shows, if only
their initial distance is large enough. Jane’s simultaneity line t′′

1
hits Dick’s world line at event

a′′1 while he is still at rest, even though they both agreed that they started at t = t′ = t′′ = 0.

While this may be confusing, it is not a problem for the theory. Simultaneity at a distance
is largely a matter of definition, the only requirement being that events that are declared
simultaneous must be spacelike. They cannot be timelike or null. What we discussed, was
simultaneity obtained by Einstein synchronization in inertial frames. There is no way of
operationally verifying this simultaneity in flight. All Dick and Jane can do is exchange
signals. And any sequence of signals sent by either of them will be received by the other in
the same order as they were sent, as long as the signals do not go faster than light. This is
exemplified in Fig. 3 where I have drawn the world lines of the two of them and a number
of light signals sent in both directions.7 The signals are sent at proper times τ1, τ2, etc. by
Dick, and their arrival events, simply denoted by 1, 2, etc. on Jane’s world line, are in the

5It also contains higher-order contributions in v/c. But the leading-order term is linear and not quadratic.
6He is at negative x values for her, while she is at positive x values for him.
7I have moved their world lines a little closer together to make sure all the signal receptions fit into the image.
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same order as the emission events, so there is no observable sign of anything unusual in Dick’s
course of time. The same holds, mutatis mutandis, for signals being sent from Jane to Dick.

So the only way Jane can state that Dick’s time is going backward for some time around the
start is by theory. She can calculate his proper time in terms of the coordinate time in her
comoving inertial system and find that during some interval the coordinate time is running
backwards in comparison with the proper time. But this is not a problem, all it shows is
that the coordinate time of her comoving inertial system is not well-suited for an intuitive
description of what happens at Dick’s position. Comoving inertial systems are useful only
locally when there is acceleration, and Jane’s coordinates are not useful in describing Dick’s life,
if he is too far from her. Of course, for him there is nothing particular happening while Jane’s
coordinate time runs in the opposite direction of his proper time at his position.8 Einstein
synchronization is very useful for a description of temporal sequences in inertial systems, but
is loses some of this utility in accelerating systems such as the rotating disk [5].
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Fig. 3: Signal exchange. Dick’s proper times at emission are τn, n = 1 . . . 5, arrival
of the signal is only denoted by n. Jane’s proper times at emission are τ ′n, n = 1 . . . 4,
arrival is again only denoted by n.

Finally, it is helpful to consider the whole story from the point of view of the final inertial
frame, when C and C ′ may be identified. Lines of simultaneity in this frame are drawn in dark
magenta in Fig. 2. The line connecting the events z1 and z′′2 demonstrates that in this frame,
Jane starts her journey before Dick. She also finishes it before him (at the intersection b1 of
the t′′

2
line with Jane’s world line, Dick still being at b′′2). Since in this frame both twins are

moving initially (towards the negative x direction) and are at rest finally, this means that Dick
keeps moving while Jane is getting slower and hence he ages more slowly than she. None of the
lines of simultaneity in frame CC ′ intersects the two world lines at the same velocity between
events z1 and b′1 (exclusively). As long as one of the intersection points lies in the acceleration

8Closer to Jane’s position, her coordinate time will be directed to the future of all local proper times.
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part of the world lines, Dick is always moving faster towards the negative x direction. So the
two twins are certainly not identically accelerated in the final frame of reference. And the fact
that Dick is younger is easily explained by his motion at a speed that never falls below that
of his sister throughout the time intervals considered.

Note also that the age difference is a “difference at a distance”. Dick and Jane cannot compare
clocks or calendars directly, they have to communicate via signals. What will be their age
difference, if they come together to compare clocks? That depends on how precisely they
get together. If they do it by slow enough motion in the final frame, their age difference will
remain the one calculated above. If Dick keeps his velocity unchanged and Jane moves towards
him sufficently fast, she will age more slowly during that time and they will find a smaller age
difference, she may even be younger than he on meeting. If Jane stays at a fixed position in
the final frame and Dick joins her, the age difference will at least be the amount calculated,
because he can only age more slowly than her during the trip. Finally, if they return to their
parents’ frame, each by exactly the same acceleration program – as seen in P , they will have
the same age again.9

Involving another moving frame

Having discussed the Boughn scenario, let us now have a look at Quattrini’s changes. The
first thing is that he puts a comoving system S between the two. Obviously, he thinks that
if S instantaneously moves at the same speed as B and A that they are essentially the same
inertial system. As we have noted, things are a bit more complicated than that, see Fig. 4.
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Fig. 4: Dick’s and Jane’s frames B and A together with an instantaneously comoving
inertial system S, i.e., S does not move along the dashed world line but along a
tangent to it.

First, we have to decide whether S itself is accelerated in parallel with Dick and Jane. If this
is the case, neither Dick nor Jane will ever be at rest with respect to S in an inertial system
comoving with S (except at t = 0). So this is not a useful construction.

9This means their acceleration programs will be different in CC′.
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What we can say is that from the point of view of P Dick, S and Jane may be seen as being
at rest with respect to each other in an instantaneous inertial system which can be identified
with S. However, if the system S is to be inertial itself, its velocity will be different from that
of Dick and Jane immediately before and after the moment it comoves with them. But from
the point of view of Dick or Jane, for S to be an instantaneously comoving inertial system, it
should move at the same speed either at the time given by the x axis of B or at that given by
the x axis of A. That means that if S is an inertial system comoving with B at the time of
event e1 in Dick’s frame, then e2 and e3 will be simultaneous with e1. Of course, this means
that only B and S are instantaneously at rest relative to Dick, while A is moving at some
non-zero velocity away from both of them. On the other hand, if we require S and A to be
instantaneously comoving according to Jane, the events that are simultaneous are f1, f2, and
f3, and obviously system B is not at rest with respect to either S or A.

This destroys much of Quattrini’s argument. It seems to me that the reason for the intro-
duction of S was to have a means of stopping B and A simultaneously, by sending a signal
from S. This would work for motion at constant velocity albeit not the way imagined by
Quattrini, because the two systems would receive their signal at the same time in a moving
inertial system, not in P . But then the formula for the time difference used by Quattrini is
incorrect, as it refers to equal times in P . In reality, the situation is worse: there is no inertial
system comoving with either A or B at all, in which a signal sent from S would arrive at the
same time for both observers or for P . This can be seen from the light rays sent from an S
that is at rest w.r.t. to Dick and Jane at t = 0, where the left-running ray arrives at tl0 at
Dick’s position, and the right-running ray at tr0 at Jane’s position, which is definitely later

in P , but also in B as the picture suggests – the line connecting the arrival events of the two
rays is not parallel to the x axis of B near the event labeled by tl0.

10 The situation does not
change significantly, if S sends its signals at t1 in P . Then the left-running signal will arrive
at A at tSl0 and the right-running one even leaves the figure before arriving at B.

However, we do not have to send signals to make A and B switch to constant-velocity motion
at a fixed time in P . Rather, this is pretty easy. Put an observer, staying at rest in P , at any
point in space; each of these is to have a watch and these watches are synchronized in P (via
the Einstein procedure). We agree on the time t2 in advance as the moment when the parents
want the kids to shut their engines down. Then the two observers who are next to Dick and
Jane at the moment their watches indicate the time t2 signal them to shut down their engines.
Since they are at the positions of Dick and Jane, this takes no time, and we have a procedure
that stops their acceleration correctly to make them coast as in Fig. 2. Can this ever lead to
a problem with the stopping time in B being smaller than zero? No. Regardless of how fast
the acceleration is, we see from the picture that if t2 > 0, then both A and B will have times
greater than zero as well.

What if we try to do the stopping instantaneously in S? We could do it the same way as in
P , but now our observers have to be at rest in S, i.e., they must move at a fixed velocity v
(in P ) all the time. If the predetermined time of the two observers next to Dick and Jane was
chosen to correspond to event e1, then the acceleration will be stopped at events e1 and e3. In
that case, Dick will be at rest in S, but Jane will move to the right. The time formula used by
Quattrini does not apply. Moreover, Jane will from that time on age more slowly than Dick,
due to the standard relativistic time dilation. If the predetermined time was chosen much
smaller, corresponding to event f1, then Dick will never start his engine. Jane will stop to be
at rest in S but Dick will move to the left in S and therefore age more slowly than Jane as

10But it is almost parallel, so a more precise statement requires a calculation.
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long as he does.11

None of these scenarios corresponds to what Quattrini had in mind. But what he describes
does not realize what he had in mind. So no contradiction with Lorentz invariance has been
demonstrated.

A few calculations

In fact, the above considerations are completely sufficient to disprove Quattrini’s claims, even
though they are based on a qualitative approach, the drawing of diagrams. But these diagrams
represent the spatiotemporal situation correctly, and we can even base detailed calculations
on their geometric features.

I will use this now to derive the correct formulas for the case of a signal being sent from S and
for the case of instantaneous termination of acceleration in S when either A or B is at rest
there. Since this is a bonus, not necessary for dealing with Quattrini’s arguments, readers who
are satisfied by the qualitative discussion may skip the calculations and immediately advance
to the summary.

To do these calculations, we need to specify the acceleration program (which was not necessary
for the drawing of qualitative figures). For simplicity, I will assume the acceleration to be
constant during the working time of the engines – in frame P . So the velocity will increase
linearly with time. Of course, this means that this kind of acceleration cannot be upheld
forever – the speed of light is still a limit.12 Let Dick start from x = 0 at t = 0, then his
trajectory is described by x = g

2
t2 for t > 0 (before he switches his engine off), where g is the

acceleration in P . Jane is initially located at x = H and moves according to x = H + g
2
t2 for

t > 0. At time t1, we assume system S to have its origin at x = H
2
+ g

2
t2
1
and a light signal to

be sent to the left and to the right from there. We do not even have to specify the speed of S
for the following calculations, because light always moves at speed c in P . The two light rays
move according to:

xl =
H

2
+

g

2
t21 − c(t− t1) ,

xr =
H

2
+

g

2
t21 + c(t− t1) , (3)

and to determine their arrival times at the positions of Dick and Jane respectively, we have to
intersect their world lines with these straight lines. This gives two quadratic equations (due
to our simple choice of acceleration program). Equating xl with Dick’s position, we find

g

2
t2 + ct−

g

2
t21 −

H

2
− ct1 = 0 , (4)

solved by

t = −
c

g
±

√

(

c

g
+ t1

)2

+
H

g
. (5)

11Since the observers in S did not have to communicate with either Dick or Jane to implement their procedure,

there is also no causality violation. Whether Dick has already powered his engine or or not, does not mean

anything to them in terms of their task to send a signal to a spaceship passing by as soon as their clock displays

time t′′1 .
12Constant acceleration in P means increasing proper acceleration, so the procedure would not be healthy for the

twins, if kept up for too long.
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One of the solutions is positive, the other negative. A look at Fig. 4 tells us that the postive
solution is the correct one, because the time at which the left piece of the forward light cone
of S hits Dick’s world line must be larger than t1. The negative solution corresponds to a
light signal emitted from the continuation of Dick’s parabolic world line to negative times and
running left to reach S at time t1. This is not the solution we are looking for. So we take the
plus sign to obtain tSl0.

Equating xr with Jane’s position, we get instead

g

2
t2 − ct−

g

2
t21 +

H

2
+ ct1 = 0 , (6)

solved by

t =
c

g
±

√

(

c

g
− t1

)2

−
H

g
. (7)

Both solutions are positive,13 but a look at Fig. 4 tells us that here the solution with the minus
sign is the correct one, giving tSr0. We need the solution corresponding to the first intersection
with Jane’s world line, which is the smaller one of the two. The second solution is unphysical,
because there would be only one intersection with a world line curved to the right that nowhere
has a slope smaller than one. But in assuming the acceleration to be constant, we obtain a
world line that indeed has a slope smaller than one at sufficiently large x. This corresponds
to superluminal speeds and the second intersection of our right piece of the light cone of S
with Jane’s world line would obviously have to be at a position, where this is the case. Our
constant-g model of a world line describing acceleration cannot be continued legitimately to
these x values. A more realistic model would not have this problem, but might render the
calculation of the intersections more difficult.14

We then find that the times tSl0 and tSr0 are not equal. Their difference is

∆t = tSr0 − tSl0 = 2
c

g
−

√

(

c

g
− t1

)2

−
H

g
−

√

(

c

g
+ t1

)2

+
H

g

≈
v1H

c2
1

1− v2
1
/c2

+
H2g

4c3
1 + 3v2

1
/c2

(

1− v2
1
/c2

)3
, (8)

where the first line is exact and the second is an expansion valid for H ≪ c2/g and taken to
quadratic order in H. v1 = gt1 is the speed of system S on emission of the light signals, i.e.,
the speeds of B and A are larger, when Dick and Jane switch off their engines. Moreover, they
are different from each other, as ∆t 6= 0, so the switching-off does not happen at the same
time in P .

It is interesting to compare ∆t with the result from Eq. (2). If we drop the term quadratic
in H, we have ∆t = γ(v1)

2v1H/c2 which looks similar to that result, except that we have
velocity v1 instead of v and a factor of γ2 instead of γ. It would be typical for a dabbler in
special relativity to interpret the result Eq. (8) as an approximation to the exact result from
Eq. (2), arguing that for short times the stopping procedure via a light signal is essentially
equivalent to stopping at a fixed time and that the time difference in primed coordinates must,

13Unless H/g is too large, in which case there is no solution – the light signal never catches up with the accelerating

observer.
14We can always solve a quadratic equation explicitly, but may not be able to find analytic solutions for more

involved world line equations.
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due to time dilation, just be 1/γ times the result in times of P , so the two results actually
agree up to the difference in velocities (v versus v1) which should be also small... But this
argument has no basis. The time dilation formula producing a factor of 1/γ between the clock
rates of times in P and times in C holds only, if the time interval is measured at a fixed
position in C.15 But ∆t is a time interval between two events at different positions in all
inertial systems considered. Normally, they are even spacelike, so they cannot be at the same
position in any inertial system. Therefore, there is no room for application of the standard
time dilation formula here.16 Moreover, ∆t is the difference between the switch-off times of
the engines in system P . This time was assumed to be zero to derive Eq. (2)! One simply
should not let oneself being seduced by a superficial similarity of formulas into believing in
physical equivalence.

Finally, let us consider the case where Dick’s and Jane’s stopping is prompted by two observers
at rest in S at a predetermined time. There are two interesting cases. The stopping time can
be chosen as the time of event e1 in Fig. 4, then Dick will have the velocity of S on shutting
down his engine, or else stopping is at the time of event f1, then Jane will coast at the velocity
of S after shutting down her engine. Let us calculate the times t(e3) and t(f3), at which Jane
will switch off her engine in the first and Dick will switch off his engine in the second scenario.
This is again easy with a constant acceleration g.

In the first scenario, Dick shuts down his engine at event e1 at time t1 and position x(e1) =
g
2
t2
1
.

His velocity is v = gt1. Jane is stopped at event e3 which is simultaneous with e1 in S. Because
the slope of lines of simultaneity of S is v/c, the time in P is given by

ct(e3) = ct1 +
v

c
(x(e3)− x(e1)) = ct1 +

v

c

(

H +
g

2
t(e3)2 −

g

2
t21

)

. (9)

This again is a quadratic equation, and the relevant solution for t(e3) is

t(e3) =
c2

vg
−

√

(

c2

vg
− t1

)2

−
2H

g
. (10)

When the square root can be expanded, which is the case for sufficiently small H/g, this turns
into

t(e3)− t1 ≈
H

g(c2/(vg)− t1)
+

H2

2g2 (c2/(vg)− t1)
3

=
vH

c2
1

1− v2/c2
+

H2g

2c3
v3

c3
1

(1− v2/c2)3
(11)

Comparing this with Eq. (8), we see that the results are equal to lowest order in v/c but not
at the next, the cubic order. Also, they agree to linear order in H but not at quadratic order.
This shows that for sufficiently small velocities v or distances H, sending a light signal from a
comoving inertial system intermediate between the twins’ positions will approximately realize
simultaneous stopping in that frame, but not, of course simultaneous stopping in P , which
would be necessary to use Bouhgn’s results.

Now have the stopping time chosen so that it is Jane that will come to rest in S. Here we
have to distinguish two cases. The event f3 at which Dick will be stopped is at x(f3) = 0, if

15In deriving that formula, one has to assume the clock to be at rest in one of the systems.
16Instead, the full Lorentz transformations must be used.
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t(f3) < 0 and it is at x(f3) = g
2
t(f3)2, if t(f3) > 0. What are the precise conditions for the

first case to happen? We have (see Fig. 4)

ct(f3) = ct1 +
v

c
(x(f3)− x(f1)) = ct1 +

v

c

(

x(f3)−
g

2
t21 −H

)

= ct1 −
v

c

(g

2
t21 +H

)

+
v

c
x(f3) , (12)

and the last term of the second line is alway greater than or equal to zero. So a necessary
condition for t(f3) < 0 is

ct1 −
vg

2c
t21 −

vH

c
< 0 . (13)

Using v = gt1, dividing by t1 > 0 and multiplying by c, we get

c2 − gH <
g2

2
t21 . (14)

Since our assumption of constant acceleration restricts t1 to times smaller than c/g, the right
hand side is necessarily smaller than c2/2. Therefore, if gH < c2/2, condition (14) is never
satified. We need either sufficiently large distance H between the twins or sufficiently large
acceleration g to obtain the effect that simultaneously stopping Jane and Dick in S will lead to
Dick being stopped in P even before having started. Note that if gH > c, then the condition
is always satisfied and it is inevitable that if Jane is stopped sometime inside the legitimate t1
interval, Dick has not yet fired up his engine in the frame S.

Suppose now that the condition is not fulfilled, so Dick has already started according to S,
when Jane is stopped. Then the calculation is fully analogous to that of the case where Dick
is stopped at event e1. We have

ct(f3) = ct1 +
v

c
(x(f3)− x(f1)) = ct1 +

v

c

(g

2
t(f3)2 −

g

2
t21 −H

)

. (15)

This is solved by

t(f3) =
c2

vg
−

√

(

c2

vg
− t1

)2

+
2H

g
. (16)

When the square root can be expanded, which is the case for sufficiently small H/g, this turns
into

t(f3)− t1 ≈ −
H

g(c2/(vg)− t1)
+

H2

2g2 (c2/(vg)− t1)
3

= −
vH

c2
1

1− v2/c2
+

H2g

2c3
v3

c3
1

(1− v2/c2)3
, (17)

where we have a minus sign in front of the first term, because t(f3) must be smaller than t1.
Here a similar interpretation as for Eq. (11) is possible, because H (or v) can be arbitrarily
small.

The more interesting case is of course the one, where t(f3) does indeed become negative.
Then the second form of Eq. (15) does not hold, but the first form is of course still valid with
x(f3) = 0, which leads to an explicit equation for t(f3):

ct(f3) = ct1 +
v

c

(

−
g

2
t21 −H

)

, (18)
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hence

t(f3)− t1 = −
v

c2

(g

2
t21 +H

)

= −
v

c2

(

v2

2g
+H

)

= −
v

gc2

(

v2

2
+ gH

)

< −
v

g
= −t1 , (19)

where we have used that condition (14) implies v2/2 + gH > c2. Note that this scenario is
not achievable via signal sending from S to any useful approximation. While we have known
that already from the discussion of Fig. 4, demonstrating that any signal sent from S after
t = 0 cannot arrive at Dick’s position at a time t < 0, we can read it off here from the side
conditions. v is always smaller than c, so H must be sufficiently large for condition (14) to be
satisfied. But then the expansions used to show approximate equivalence of the signal sending
and the heralded stopping scenarios do not work anymore. In these expansions, we must have
H sufficiently small, which will invalidate condition (14). So Quattrini’s argument fails on
that account, too.

Summary

It has been shown that special relativity describes all aspects of the situation of the equally
accelerating twins consistently. While some of these may be surprising at first sight, they
all find a natural explanation in the kinematical relationships following from the structure of
Minkowski spacetime. There is no “breaking of Lorentz invariance” ar anything of similar
dramatic appeal.
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