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particle enters box horizontal-
ly at speed v0; for photons, we
simply have v0 = c

Let the width of the box be L. We first do a Newtonian calculation of the trajectory, for
reference purposes and as a zeroth-order approximation:

x = v0t ,

y = −g

2
t2 = − g

2v20
x2 .

The total time to pass the box is, in this approximation, ∆t =
L

v0
, the total distance fallen

by the particle is ∆y = −y(L) =
g

2v20
L2. The ratio of the distances fallen by light (v0 = c)

and a massive particle with initial velocity v0 = v is simply v2

c2
in the Newtonian limit.

The exit angle is given by tanφ = y′(L) = −gL

v20
.

Now we wish to calculate the relativistic correction to this result. Since g∆t ≪ c, unless
the particle starts off very slowly, we anticipate the correction to be very small, so we
expect it to be calculable perturbatively. In the following, we will assume L ≈ 1 km and
v0 ≥ 10−6c. It will turn out that in this case the correction is small indeed.
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We start with photons as for these the calculation is simplest. At each point of the trajec-
tory, we must have:

vx = cosφ(x) c ,

vy = sinφ(x) c .

This looks as if it could be exact, if φ(x) were the exact angle between the tangent to
the trajectory at x and the x axis. However, we do not know the exact trajectory. A
good approximation will be obtained (as we can check afterwards) by substituting the
Newtonian trajectory.

Hence,

vy
vx

= tanφ(x) = y′(x) ≈ −gx

c2
≈ −gt

c
,

c2 = v2x

(

1 +
v2y
v2x

)

≈ v2x

(

1 +
g2t2

c2

)

,

vx =
c

√

1 + g2t2

c2

, vy =
gt

√

1 + g2t2

c2

,

Because of gt . g∆t ≪ c, we may approximate the square root by its expansion:

vx =
c

1 + g2t2

2c2

.

The total time ∆t∗ needed by the light to pass the box is then given by:

L =

∫ ∆t∗

0
vxdt = c

∫ ∆t∗

0

1

1 + g2t2

2c2

dt =

u = gt√
2c

√
2
c2

g

∫ g∆t∗/
√
2c

0

du

1 + u2

=
√
2
c2

g
arctan

g∆t∗√
2c

,

g∆t∗√
2c

= tan
Lg√
2c2

≈ Lg√
2c2

(

1 +
1

3

(

Lg√
2c2

)2
)

,

where we have used Lg/c2 ≪ 1 to obtain the last simplification (this follows from our
general assumption g∆t ≪ c).

Hence, we obtain as lowest-order relativistic correction:

∆t∗ =
L

c

(

1 +
1

6

L2g2

c4

)

and the distance fallen by the photon becomes in this approximation

∆y∗ ≈ −g

2
∆t∗2 = −g

2

L2

c2

(

1 +
1

6

L2g2

c4

)2

.
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Alternatively, we may derive the result using conservation laws. The advantage of this
approach is that it generalizes directly to massive particles.

First, we note that in a gravitational field with acceleration g, there is time dilation between
the standard clocks of observers at different heights. For small height difference ∆h, the
ratio of the proper time intervals τ(h+∆h) and τ(h) is given by:

τ(h+∆h)

τ(h)
= 1 +

g∆h

c2
, [g = g(h)] ,

i.e., at bigger heights people age faster. We take h to be the entry height of the particle,
so ∆h becomes equal to y.

If we take as time coordinate the proper time of a fixed observer, we have a homogeneous
time, hence energy conservation holds. The energy of a photon, therefore its frequency,
too, will not change for such an observer. But since time goes more slowly for an observer
a distance |∆h| down from the entry point, he will observe the photon at an increased
frequency:1

ν(h− |∆h|)
ν(h)

=
1

1− g|∆h|
c2

≈ 1 +
g∆h

c2
.

Next we note that space is homogeneous in the x direction, so the x component of mo-
mentum is conserved (the y component is not, because space is inhomogeneous in the y
direction due to the gravitational field).

Then the x component of the photon momentum is given by

px =
hν0
c

=
hν(t)

c
cosφ(t) .

But we know how ν changes with height:

ν(t) = ν0

(

1 +
g |y(t)|

c2

)

,

which allows us to obtain cosφ(t):

cosφ(t) =
ν0
ν(t)

=
1

1 + g|y(t)|
c2

≈ 1

1 + g2t2

2c2

.

Since the horizontal component of the speed of light is

vx = c cosφ(t) =
c

1 + g2t2

2c2

,

we obtain the same result as before.

1Note that for both observers, energy conservation holds, i.e., the observer at h considers the photon to
always have the frequency ν(h), the one at h − |∆h| always assigns the frequency ν(h − |∆h|) to it; they
both agree that the other sees a different frequency, because her time passes faster or more slowly.
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Now let us consider the case of a massive particle. Here, conservation of the x component
of momentum reads:

mγ(v0)v0 = mγ(v)vx , γ(v) =
1

1− v2/c2
,

where m is the invariant mass (the “inertial mass” is mγ(v)).

Energy conservation means that E = mγ(v)c2 is constant for an observer at fixed height.
An observer at a lower height will see an increased energy due to time dilation

E(h− |∆h|)
E(h)

=
1

1− g|∆h|
c2

≈ 1 +
g∆h

c2
.

Energy and frequency behave absolutely the same under time dilation, which means that
the inertial mass, which is just E/c2 is constant for an observer at fixed height in the case
of a freely falling particle.2

This means we can directly express γ(v) by the height difference

E(y)

E(0)
=

mγ(v)c2

mγ(v0)c2
=

γ(v)

γ(v0)
= 1 +

g |∆y|
c2

.

Momentum conservation then simplifies to

v0 =

(

1 +
g |∆y|
c2

)

vx ,

vx =
v0

1 + g|∆y|
c2

≈ v0

1 + g2t2

2c2

.

The total time for the particle to cover the length L is then obtained via

L =

∫ ∆t∗

0
vxdt = v0

∫ ∆t∗

0

1

1 + g2t2

2c2

dt =
√
2
cv0
g

arctan
g∆t∗√

2c
,

g∆t∗√
2c

= tan

(

Lg√
2cv0

)

≈ Lg√
2cv0

(

1 +
1

3

(

Lg√
2cv0

)2
)

.

Our final result for the time of flight is then

∆t∗ =
L

v0

(

1 +
1

6

L2g2

c2v20

)

and the distance fallen becomes

∆y∗ ≈ −g

2
∆t∗2 = −g

2

L2

v20

(

1 +
1

6

L2g2

c2v20

)2

.

2If the particle is prevented from freely falling, e.g. by being mounted on a track that is lowered in the
gravitational field, its kinetic energy cannot increase as it would in free fall. So its total energy and hence
inertial mass decreases from the point of view of the fixed-height observer, who can extract the energy
difference on lowering the particle slowly.
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Let us call ∆y∗mp the distance fallen by the massive particle and ∆y∗ph the distance fallen
by the photon. We then obtain for the ratio of these distances:

∆y∗mp

∆y∗ph
=

c2

v20





1 + 1
6
L2g2

c2v2
0

1 + 1
6
L2g2

c4





2

.

The first factor c2/v20 corresponds to the Newtonian result and the second factor is the
lowest-order special relativistic correction. Since this factor is not equal to 1, there is
indeed such a correction, let us call it Shuler’s correction. We have to check now whether
our approximations were o.k., i.e. whether the corrction is small. To this end, we plug in
reasonable numbers.

We consider a box of size L = 1 km and we take g = 274 m
s2
, which is the acceleration at

the surface of the sun (taken from Wikipedia). For v0 we take 10−6c.

This produces

Lg

c2
= 3× 10−12 ,

[

⇒ vphx(∆t∗) ≈ c

1 + g2L2

2c4

= c

(

1− 9

2
× 10−24

) ]

Lg

cv0
= 3× 10−6 ,

[

⇒ vmpx(∆t∗) ≈ c

1 + g2L2

2c2v2
0

= v0

(

1− 9

2
× 10−12

) ]

pretty small numbers indeed, leading to

∆y∗mp

∆y∗ph

v20
c2

=

(

1 + 1
6 × 9× 10−12

1 + 1
6 × 9× 10−24

)2

≈ 1 + 3× 10−12 .

Hence, our approximations were consistent, the result is quantitative.

So the good news is: There is indeed a Shuler’s correction to the equivalence principle part
of the deflection angle. The bad news is that Einstein was completely right in neglecting
it. As one goes farther away from the sun, the correction will be of comparable size in each
box first but then become smaller with increasing distance. Therefore, the total angle of
deflection will be corrected by a similar or smaller factor, i.e., by an order of magnitude
of 10−10 percent, which is certainly below what is measurable at this moment.

It should also be observed that most of the correction comes from the relativistic slowing
down of the massive particle, not from that of light (Lg/cv0 ≫ Lg/c2), so the main effect
is different from what was anticipated by Robert Shuler.

Another good news is of course that the result, which does not double the standard
prediction but only changes it by a tiny tiny bit, saves us from the embarrassment of
having to explain why the total angle of deflection including the general relativistic part
(that is not obtainable from the equivalence principle), is not 3/2 of what is observed right
now.
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