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1. Introduction

The nature of computation by C.Moore and S. Mertens (Oxford
UP) 2011, is a beautiful encyclopedic book, which covers a
large range selection of topics from the loosely denoted field
of Theoretical Computer Science (see the synopsis of the book in
the next section). The style favors intuition and clarity over
full technical details, which often are left as exercises for the
reader, more about this in the conclusions. I believe this style
is well reflected in the cite from one of Anne Fadiman’s books
that heads the Preface: The familiar essayist did not speak to
the millions; he spoke to one reader, as if the two of them were
sitting side by side in front of a crackling fire with their cravats
loosened, their favorite stimulants at hand, and a long evening of
conversation stretching before them. His viewpoint was subjective,
his frame of reference concrete, his style digressive, his eccentricities
conspicuous, and his laughter usually at his own expense. And
though he wrote about himself, he also wrote about a subject,
something with which he was so familiar, and about which he was
often so enthusiastic, that his words were suffused with a lover’s
intimacy. As both authors are physicists by training, a lot of the
intuition comes from the physics world, and not only in the
chapters on advanced topics, but right from the beginning of
the book. Each chapter contains a quite complete collection
of historical, bibliographical and anecdotical notes on the
technical material, which by themselves make a pleasant
historical reading. In my opinion, it would have been better
to include in the main text the few notes that sketch proofs of
stated results. Quite a few technical details in the chapters are
left as exercises, mainly mathematical derivation of formulas
or not too difficult proofs of Lemmas. Moreover, at the end of
each chapter there is a quite extensive collection of mostly
challenging problems. The exercises fill the mathematical
manipulation missing from the text, otherwise the book
would be too heavy, and the problems aim to complement
the material in the chapter. However, as the book progresses
and the topics get more advanced, it seems to me that the
difference between exercises and problems blurs. The book
has several levels of reading, from getting acquaintedwith the
historical evolution of the topics it contains, to learning the
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technical details of the material presented. In the last level,
the reader should try to solve most of the exercises, and in
the chapter-by-chapter description below, for each chapter I
added my opinion of some of the problems that complements
the contents.

2. Chapter-by-chapter synopsis and analysis

In the Prologue (Chapter 1), the authors introduce in a
very intuitive way the concept of algorithm, and succinctly
explains the importance of the study of the complexity
to solve problems, and the differences between different
problems. The problem in this chapter give a clear indication
that the authors expect the reader to have a certain maturity
in the field of mathematics and computer science.

Chapter 2 goes in a more formal way into the concepts of
algorithms and resources needed to solve a problem (space
and time complexity). One of the most challenging parts of
this chapter are the problems and the notes at the end of
chapter. For instance in problems 2.7 and 2.8 the authors make
a subtle (but guided) introduction to the average complexity
of algorithms, in this particular case the average complexity
of the Euclid algorithm to find the gcd of two integers. Note 2.6
introduces Karatsuba–Ofman’s algorithm formultiplication of
two integers and note 2.11 introduces the Robertson–Seymour
theorem to decide if a graph has a minor-closed property.

In Chapter 3, the authors cover in a single stroke the
basic algorithmic techniques, divide and conquer, including
the n lgn algorithm for the FFT (problems 3.13 to 3.16 deal
with further material on the FFT, including how to modify
the FFT in the case when n is prime), dynamic programming,
and greedy algorithms, including a brief introduction to
matroid theory. They also include two sections on flows and
cuts in digraphs. The chapter ends with an explanation of
the reduction techniques between problems, a concept that
will play an important role in the forthcoming complexity
chapters. This chapter alone could help to supplement
the material for any standard course on algorithmics, at
the undergraduate level. Particularly nice are some of the
problems in the extended collection (50) at the end of
the chapter. For instance, problem 3.8 presents the average
analysis of quicksort, problem 3.27 asks for a polynomial time
solution of the maximum independent set on a Sierpinski
triangle and problem 3.49 asks for a polynomial time algorithm
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to minimize the energy of spin glasses in some particular case
(this problem is almost a prerequisite for Chapters 12 and 13).

Chapter 4 deals with needles and haystacks, i.e. the class
NP. It goes into proving that several problems are in the
NP class, including some known nut shells as primality, and
also some not so well known as the unknot problem: given
a non-intersecting curve C in R3, decide if C can be untied
without cutting it or passing it through itself. Many of the
problems introduced in this chapter will be used throughout
the book. For instance, in the chapter it is proved that the
integer partition problem is in NPC, that same problem will play
an important role in Chapter 14. In my opinion, Chapter 4
is a chapter that follows the standard material, with a very
interesting personal twist in the presentation.

Chapter 5 introduces the class NP-Completeness. To avoid
the use of Turing Machine, to be introduced in later, the
authors use as base for the existence of a NPC problem, the
following one: given a program on input x and a witness
w, and an integer t given in unary, decide if there exists
a w with |w| ≤ t such that the program returns yes in at
most t steps. Although, the outline of the chapter is the
classical one, the definition of reduction and the building of
the class NPC by adding new problems via reductions, have
interesting particularities. Section 5.3 is devoted to classify
and explain the bag of tricks used to design reductions, and
give the feeling for why they work. The following section,
presents an array of arithmetic problems, for which their NP-
Completeness is not obvious. My favorite one is the cosine
integration problem: given a set of integers x1, . . . , xn decide
if

 π
−π(cos x1θ) · · · (cos xnθ) dθ ≠ 0. The details are in Section

5.3.5. Section 5.5 deals with the fine edge as why for many
problems, the variant with parameter 2 is in P while the
variant with parameter ≥ 2 is NPC, for example 2-SAT and 3-
SAT, or 2-coloring and 3-coloring. Problem 5.50 asks to prove
that the general case for the minimum energy spin glass
problem (introduced in Chapter 3 for a particular case) is in
NPC.

Chapter 6 deals with themillion dollar question of P vs. NP,
and pushes forward the authors’ hypothesis that P vs. NP is
the holy grail of all the mathematical challenges between all
millennium problems, posed by the ClayMathematical Institute.
Chapter 6 is an enjoyable chapter that could be read by a
broad spectrum of people outside the field by skipping the
formal proofs and definitions, so they can grasp the meaning
and importance of the P vs NP question. As the authors
explain, the P vs NP problem is intrinsically coupled with
the survival of the power of human reasoning and creativity
(see Section 6.1). Section 6.7 presents a nice survey on the
classes defined by nonconstructive proofs: PPP, PPA and PPAD
(the Pigeon principle, the polynomial parity argument and
Sperner’s lemma). The chapter ends with a short section,
titled The Road Ahead, in which the authors present their
intuitions on the improbability that the P vs NP problem is
going to be formally provable in a short time.

Chapter 7 deals with the different formalism for the notion
of universal computation and its limitations, i.e. recursion theory.
I really do not understand why it is placed in between
chapters dealing with decidable complexity classes, but it
is the choice of the authors and it should be respected. It
starts with a beautiful section on the motivation for the
chapter, which has the title: Babbage’s Vision and Hilbert
Dream, where the authors present a historical survey of the
concurrent efforts to find algorithms for solving problems
and the feasibility of the universal computers to implement
the algorithms. They cover from the difference engine of
Babbage to the Turing machine (more interesting efforts are
described in notes 7.1 and 7.2). The following sections in the
chapter are devoted to the main three formalisms developed
for the concept of computation: recursive functions, the
λ-calculus and the Turing machine. After, there is a section
with the Church–Turing thesis of equivalence between the three
formalisms (see also note 7.16). As is done through all the
book, the exposition is intuitive but rigorous. At the end of
the chapter, the authors extend the Church–Turing thesis
with other “modern” models of computation: Counter Machine
(Minsky, 1967), Fantastic Fractions (J.H. Conway, 1987), Game
of Life (J.H. Conway, 1970), Tiling the infinite plane with Wang’s
tiles (Hao Wang, 1961), and Iterated maps from continuous
dynamical systems. The exposition of these last material is
done in a less formal way than in the core of the chapter.

Chapter 8 deals with space complexity. The authors follow
the canonical methodology and use two-player games for
defining the classes. The authors introduce the space classes:
L, NL, PSPACE and NPSPACE, and relate them to the classes in
the Polynomial Hierarchy. They go into detail proving that the
reachability problem is NL-complete and stress the difference
with the NP class, by stating the Immerman–Szelepcseny
Theorem, that the non-deterministic complexity classes are
closed under complement (in particular NL = co-NL). They
prove Savitch’s Theorem: PSPACE = NPSPACE (see also problems
8.2 and 8.3, for variation on the theorem). Section 8.7 presents
the proof that generalized geography is PSPACE-complete (see
further variations of generalized geography in problems 8.16
to 8.20) and they also prove that generalized GO is PSPACE-
hard, and they state, but not prove, that generalized GO is
EXPSPACE-complete. Particularly interesting are exercises 8.8.2
and 8.8.30, where the authors deal with the space complexity
of 2-SAT and 2-Coloring.

Chapter 9 is in the line of chapter 3, but here, the authors
give an exhaustive tutorial (102 pages) on optimization
and approximation (notice much of the basic introductory
material has been explained in previous chapters). The
chapter could be easily used as a basic material for an
advanced course on optimization and approximation. From
my point of view, the differences with some of the existing
books are the great deal of emphasis on giving intuitive
geometrical ideas behind the concepts, and the effort to
explain things from a different perspective, for instance in
the proofs by the balloon method. The chapter starts with
a succinct introduction to maximization and minimization
problems and their approximation to the optimum (or
their non-approximability). It follows a section of Linear
Programming, which includes a description on the simplex,
the Klee–Minty example to show that the simplex could
take exponential time, and the section ends on with a
brief introduction to smoothed analysis. Section 9.5 deals
with duality, and includes a different proof of the strong
duality theorem by balloon proving. In Note 9.14, the authors
sketch an interesting alternative proof using an idea from
economics. Section 9.7 presents the intuitive basis of the
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ellipsoid method and of go at length in explaining semidefinite
programming. Problems 9.19 to 9.24 should be considered part
of the main text in this section, and some of them are not
easy. In the following section, with the nice semantic title
of algorithmic cubism, the authors present the complexity of
Integer Linear Programming (ILP), together with some problems
with equivalent complexity, i.e. reducible to ILP. Using the
concept of unimodularity of the constraints matrix, the
authors present an argumentation explaining when instances
to the ILP problems are easy to solve (i.e. in P). The chapter
finishes with a section showing how to cope in practice
with NPC problems. They take as case the Traveling salesman
problem (TSP) and present different algorithms and heuristics
to solve it for reasonable inputs. They use a concrete example
of 42 connecting cities in the US to use as benchmark for the
different techniques.

Chapter 10 deals with an introduction to randomized
algorithms and random walks. I believe the reading of this
chapter should be compulsory before going into Chapters
12, 13 and 14, as the text and problems in those chapters
need some of the materials presented in this chapter. After
a brief introduction to randomized algorithms, the authors
present the canonical examples of Karger’s min-cut algorithm
and Papadimitriou’s randomize algorithm to find a satisfying
assignment for k-SAT. In Section 10.4, the authors sketch the
semidefinite programming solution for the Max Cut problem
on weighted graphs, in fact to finish the proof the reader
should solve problem 10.12. The next section presents the
Minimax Theorem, again the proof is given as problem 10.13
(with plenty of hints) and in problem 10.14, the reader is
asked to provide an alternative proof to Minimax, using
Brouwer’s fixed point theorem. The section also includes a
generalization of the Minimax: Yao’s principle (problem 10.21
presents a nice example of the power of Yao’s principle).
The next sections present different types of randomized
algorithms; Hashing, fingerprint algorithms (Schwartz–Zippel)
and primality (Miller–Rabin). Then the authors provide a
discussion of the deterministic AKS algorithm for primality. It
is a bit surprising that a basic technique in computer science
as amplification of Monte Carlo algorithm is introduced as
problem10.45. The final section in the chapter presents the
randomized complexity classes BPP, ZPP and RP, the relations
between classes are left as exercises.

Chapter 11 deals with interaction and pseudorandom
generation. The authors first introduce Arthur Merlin and
Zero-knowledge proofs, following the standard presentation
around the graph isomorphism problem. I believe that to
understand fully the technical details, the reader should
work problems 11.1, 11.7 (this one in particular), 11.13 and
11.14. The next section presents Interactive Proofs (IP) and
it is proved that IP = PSPACE, giving a nice presentation
of the arithmetization of QuantSAT. Section 11.3 deals with
Probabilistic Checkable Proofs, where the authors first prove a
weaker version of the PCP theorem, where every NP-problem
has an exponential PCP, and the verifier flips polynomial coins
and looks to a constant number of bits in the proof. The
proof of the weak result uses the usual array of techniques
in PCP: error correcting codes, Fourier analysis and quadratic
consistency. The authors do a good job in explaining in a
clear way, non-easy material. To my taste, they abuse a
bit of leaving as exercises some technical points through
the proof, which are not particularly difficult to solve, but
slows the reading. Finally, from the weak PCP Theorem,
they sketch Dinur’s strategy of gap amplification to obtain
the strong PCP Theorem. The final section in the chapter
deals with pseudorandomness and derandomization. The
section goes all the way up to prove that BPP = P if there
are exponentially hard functions in EXPTIME (exponential
hardness is a similar condition to one-way functions but
using non-uniform Boolean functions). The chapter finishes
with a very intuitive disquisition on the possibility of the
existence of this kind of hard functions. I found some of the
problems at the end of this chapter, particularly “challenging”.

Chapters 12 and 13 could be considered as a unity
covering random walks, Markov chains sampling and
approximated counting. Using the Ising model as a motivation
to present a condensed course onMarkov chains. Following the
pedagogical line of the book, the authors put a lot of emphasis
in the intuition and motivations behind the concepts. Some
of the technical details are deferred either to the exercises or
to the problems. For example, when presenting the classical
Markov chain example of a random walk on the hypercube,
the authors give a nice physics interpretation in terms of
the Ising model. After the book explains different methods
to bound the mixing time of a Markov chain: the basic
equilibrium indicatormethod, coupling, coupling from the past and
conductance. Each method has their collection of examples.
In particular, for coupling and some of its variants as path
coupling and coupling with stationarity, the used example is
random coloring of a graph. Coupling from the past, takes a quite
extended section, with a fantastic intuition of the method
using the example of counting falling leaves on a square
of land. For more formal examples, they count spanning
trees, random rhombus tilings and of course coloring and
Ising. I have not seen previously, such a explanation of
coupling from the past. In the next section, the conductance
method is applied to show that a lazy random walk on any
undirected graph has mixing time O(n4 logn). As a Corollary
to that last result, they present a randomized algorithm for
the undirected reachability problem in an undirected graph.
Evidently, the “well known” application of coupling is given
in Chapter 13 to approximate the permanent. Chapter 12
ends with two sections; one on the spectral gap and random
walk on the cycle, and another section on expanders. This
final section ends with a subsection on the zig-zag product,
where the authors present an application of the zig-gag
product to derandomize the algorithm obtained previously
for undirected reachability. Problem 12.46 asks the reader to
prove that the Margulis expander defined inside Section 12.9
is indeed an expander. The problem is full of hints and in
my opinion, it could have been part of the text. Chapter 13
deals with the complexity and approximation of counting
problems. The chapter would be difficult to read, without
a previous exposition to complexity theory, for example
Chapters 4 to 6 and 8 of the book under review. The chapter
begins by giving a O(n2) algorithm to compute the determinant
of a n × n matrix, and showing that it is equivalent to counting
the number of spanning trees in an undirected graph, so that this
counting problem is in P. Problem 13.4 uses the Laplacian to
give an alternative poly-time solution to counting trees. After,
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the chapter presents a full explanation of the equivalence
between counting perfect matching in a bipartite graph and
evaluating the permanent of its adjacency matrix, showing the
technique used for computing the determinant, would not
work for the permanent. Section 13.3 explores the counting
classes, #P and #P-complete and goes all the way into
proving the #P-completeness of the permanent and a few
other counting problems, like counting number of satisfying
solutions to an instance of 3-SAT. problems 13.10 and 13.11
ask to show that other counting problems in the class
#P-complete, among them the #2-SAT. In the notes at the
end of the chapter, the authors provide a sketch of Toda’s
result separating the counting classes from the polynomial
hierarchy. The following section begins with a very nice
intuition about the important fact that counting is equivalent
to sampling. Then, the authors present a rigorous proof of
the fact that for any #P-complete self-reducible problem,
approximating in polynomial time the number of its solutions
is equivalent to almost uniformly sampling. After, there is a
careful description of the classic result of how to approximate
#perfect matchings (and the permanent) in polynomial time.
Section 13.6 shows that counting perfect can be done in
polynomial time if the input graph is planar, because for those
graphs the permanent can be computed, in polynomial time,
from computing the determinant of the weighted adjacency
matrix of the underlying graph. The section also contains
how to calculate asymptotic properties such as the number of
perfect matchings in a infinite lattice (dimer coverings in the
physics argot). In the problems at the end of the chapter, the
reader can find many other examples. The section contains
an interesting consideration on the different meaning of
what is a problem for the physics and the computer scientist
communities. As a curiosity, problems 13.30 to 13.34 present a
tour of different facets of the Tutte polynomial for graphs. In
Chapter 12, the 2 dimensional Ising model is used as one of
the driving examples to develop the theory of random walks
and Markov chain. In Section 13.7, the authors present the
solution to the 2-Ising problem, i.e. computing the energy and
magnetization as a function of temperature. The section boils
to a crash mini-course on statistical mechanics, but I believe
the reading of this could be very profitable to readers from
outside the physics community.

Chapter 14 presents the basic techniques to investigate
the hard-easy phase transition of some difficult (NP-hard)
problems. This is a field where the authors of the book
have important research contributions. The chapter starts
by presenting the DPLL algorithm for finding a satisfying
assignment for 3-SAT and empirically proving that for a
density value of 4.2 (the ratio between clauses and variables),
the 3-SAT has a phase transition, which goes from most
inputs being satisfiable to be non-satisfiable. After the authors
introduce the threshold conjecture and Fridgut’s theorem.
Problem 14.17 asks for the proof of the theorem for the
simpler case of 2-SAT (using methods explained later in
the chapter) and note 14.4 goes at length at explaining the
significance of the theorem and gives a hint of the proof of the
theorem. Section 14.2 presents the first analytical example of
phase transition, the giant component in Erdös–Rnyi graphs.
A few (not too easy) technical facts are left as exercises.
Moreover, notes 14.5 and 14.6 are important to read as well as
problems 14.3 and 14.8. The authors also present the existence
of a phase transition for the k-core in the Gn,p graphs. One
of the nice features of this chapter, is that the text includes
plenty of plots giving a visual evidence of the analytical
developments. Section 14.3 presents the methodology to
find lower bounds to the phase transition of 3-SAT, analyze
concrete algorithms. This shows the details for two concrete
algorithms: the unit clause algorithm and the short clause
algorithm. The analysis of the algorithms uses the differential
equation method, and maybe the reader should start with
note 14.7, to understand the general framework of differential
equations to the analysis of randomized algorithms. The
section ends with a presentation of Achlioptas’ card game
to model the use of differential equations in analyzing
randomize algorithms. Section 14.4, turns into finding tight
upper bounds for the phase transition. It starts with the
direct application of the first moment, and it continues with
a nice exposition of the application of the second moment
to find upper bounds for 3-SAT, the failure of the second
moment for k-SAT and the intuition why it fails (the authors
prove that the method works for a variation of k-SAT, the
NAE-k-SAT problem). After, they introduce theweighted second
moment of Achiloptas and Peres to obtain a solution for k-
SAT. Most of the discussion on different models of random
SAT formulas (or random graphs) are presented as problems
(14.10 for the configuration model and 14.24 for using Gn,m

instead the Gn,p). Section 14.5 presents the full analytical
development for obtaining upper and lower bounds to the
phase transition of the integer partition problem. This chapter
gives a very clear exposition on the second moment method.
Bounds for phase transition for the colorability of Gn,p are
given in problems 4.21 and 14.22. From Section 14.6 until the
end of the chapter, the authors present the physics approach
to phase transition, which yields exact values but the analysis
is not fully rigorous: the message passing methods and in
particular the belief propagation (also known as cavity, in the
physics community), and its variant survey propagation. The
last two sections deal with the geometry of solutions for 3-
SAT and analytical considerations on the survey propagation
method.

Chapter 15 (the last chapter) is devoted to fundamentals
of quantum computation. After one introductory section of
the plausibility and implications of the Physical Church–Turing
thesis, namely that a classical computer can simulate any
quantum machine with the precision we desire, the authors
present a crash introduction on the basics of quantum theory.
The text appeals to the concepts described previously about
randomized algorithms to give intuitions about quantum
phenomena. In Chapter 10, after the presentation of the
randomized and the deterministic primality test, I was a bit
surprised of not finding a section on the RSA (in Section
11.4.2, there was a brief introduction to cryptography from
the point of view of one-way functions and pseudorandom
generators). The reason is that in Chapter 15, the authors
devote a subsection to RSA and cryptography, as introduction
to Shor’s quantum factoring algorithm, it includes Euler’s totient
function and the machinery for the RSA. Using the fact
that the authors give an extensive description of Shor’s
polynomial time algorithm for factorize, they define the
quantum complexity class BQP, and the authors prove that
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besides factoring, other cryptography related problems also
belong to BQP. I was a bit surprised of the little the Chapter 15
deals with complexity issues, which seems a twist in style
with respect to the previous chapters. For instance, the
NP ⊈ BQP hypothesis could have yield some comment about
the present and future of hypothetical quantum machines
solving problems in NPC, or a specific mention (problem) on
the relation of BQP with P, BPP and PSPACE. Section 15.6
presents the quantum approach to find a polynomial time
algorithm for NPI problem (problems that may lie between P
and NPC). The last two chapters present Grove’s algorithm and
quantum random walks.

The book ends with an appendix where the authors give
a brief review of the main mathematical techniques that are
used throughout the book: asymptotic notation, inequalities,
a quite complete introduction to probability (including a
nice subsection on the second moment method), random
walks, concentration inequalities (all the way to martingales
and Azuma). The last two sections in the appendix deal
with Laplace’s method to evaluate the asymptotic behavior
of integrals and a brief remainder on modular arithmetic.
In 28 pages the authors do a good job in presenting
those techniques, to the readers that already have a solid
mathematical maturity.

3. Conclusions

I believe this book should be in the shelf of every researcher
working in algorithmics, complexity, discrete mathematics,
statistical mechanics and in general of all people interested
in recent and future trends of these fields (including profes-
sionals of other disciplines such as economists or biologists).
The reader interested in working out the technical details
in the book will need a solid knowledge of multivariate
calculus, algebra and probability, or have somebody explain
him/her the technical stuff. However, as I already mentioned,
there is a playful level of reading the book, to get the
flavor of the development of an exciting field of research
that intersects the disciplines of computer science, physics,
mathematics and even economics. Moreover as the book is
written in a charming literary English, its reading is a pleasant
experience.

Anybody teaching an algorithmics or complexity course,
at graduate or undergraduate level, will find the material
presented in a very intuitive manner, with nice examples and
motivation of the corresponding topic. On the other hand, it
would be necessary to present to the students some of the
proofs left in the book as exercises. For instance, Chapters 4–8
can be used as a textbook for an undergraduate complexity
course. For computer science and mathematics students the
book has the great advantage of the examples from the
physics world, which in my opinion is an important feature
to transmit to the students. The more advance material can
be easily used for graduate courses or seminars. For example,
Chapters 12, 13 and 14 by themselves could be a perfect
basic text for an advanced course in probabilistic methods
in computer science and discrete mathematics. I hope future
readers enjoy the book as much as I did.
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