
The Easiest Hard Problem: Number Partitioning

Stephan Mertens∗

Inst. f. Theor. Physik, Univ. Magdeburg, Universitätsplatz 2, 39108 Magdeburg, Germany

(Dated: October 2003)

Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It
has applications in areas like public key encryption and task scheduling. The random version of
number partitioning has an “easy-hard” phase transition similar to the phase transitions observed in
other combinatorial problems like k-SAT. In contrast to most other problems, number partitioning
is simple enough to obtain detailled and rigorous results on the “hard” and “easy” phase and the
transition that separates them. We review the known results on random integer partitioning, give
a very simple derivation of the phase transition and discuss the algorithmic implications of both
phases.

I. INTRODUCTION

The number partitioning problem (Npp) is defined eas-
ily: Given a list a1, a2, . . . , aN of positive integers, find
a partition, i.e. a subset A ⊂ {1, . . . , N} such that the
discrepancy

E(A) =
∣

∣

∣

∑

i∈A

ai −
∑

i6∈A

ai

∣

∣

∣, (1)

is minimized. A partition with E = 0 (E = 1) for
∑

aj

even (odd) is called perfect partition for obvious reasons.
Number partitioning is of considerable importance,

both practically and theoretically. Its practical appli-
cations range from multiprocessor scheduling and the
minimization of VLSI circuit size and delay [1, 2] over
public key cryptography [3] to choosing up sides in a
ball game [4]. Number partitioning is also one of Garey
and Johnson’s six basic NP-hard problems that lie at
the heart of the theory of NP-completeness [5, 6], and
in fact it is the only one of these problems that actually
deals with numbers. Hence it is often chosen as a base
for NP-completeness proofs of other problems involving
numbers, like bin packing, multiprocessor scheduling [7],
quadratic programming or knapsack problems.

The computational complexity of the Npp depends on
the type of input numbers {a1, a2, . . . , aN}. Consider the
case that the aj ’s are positive integers bound by a con-
stant A. Then the discrepancy E can take on at most NA
different values, i.e. the size of the search space is O(NA)
instead of O(2N) and it is straightforward to devise an
algorithm that explores this reduced search space in time
polynomial in NA [5]. Unfortunately, such an algorithm
does not prove P=NP since a concise encoding of an in-
stance requires O(N log A) bits, and A is not bounded
by any polynomial of log A. This feature of the Npp is
called “pseudo polynomiality”. The NP-hardness of the
Npp requires input numbers of size exponentially large
in N or, after division by the maximal input number, of
exponentially high precision.

∗E-mail:stephan.mertens@physik.uni-magdeburg.de

To study typical properties of the NPP, the input num-
bers are usually taken to be independently and identically
distributed random numbers. Under this probabilistic
assumption, the minimal discrepancy E1 is a stochastic
variable. For real valued input numbers (infinite preci-
sion, see above), Karmarkar, Karp, Lueker and Odlyzko

[8] proved that the median value of E1 is O(
√

N · 2−N)
and Lueker [9] showed that the same scaling holds for the
average value of E1. From numerical simulations [10] it
is known that the variance of E1 is of the same order of
magnitude as the average, i.e. E1 is non self averaging.

Another surprising feature of the NPP is the poor qual-

ity of heuristic algorithms [11, 12]. The differencing
method (see below) is the best polynomial time heuristics
known to date, and for real valued aj it yields discrep-
ancies O(N−α log N) for some positive constant α [13].
This is far above the true optimum, yet it is the best one
can get for large systems! The poor quality of polyno-
mial time heuristics is a very peculiar feature that dis-
tinguishes the Npp from many other hard optimization
problems like the Travelling Salesman Problem [14]
for which satisfying approximative algorithms do exist.

The NP-hardness of the Npp tells us that for numbers
aj bounded by A = 2κN the worst case complexity of any
exact algorithm is exponential in N for all κ > 0. Nu-
merical simulations show that the typical complexity on
instances of the random ensemble depends on κ. It is ex-
ponential and essentially independent of κ for κ > κc > 0.
For κ < κc it is still exponential, but with a base that
decreases with decreasing κ. The critical value κc marks
a transition point where the random ensemble somehow
changes its character. Below κc typical instances seem to
have a special property that can be exploited by an ex-
haustive algorithm. It turns out that this property is the
probability of having a perfect partition, which jumps
from 0 to 1 as κ crosses κc from above. This abrupt
change of quantity is called a phase transition in anal-
ogy to the transitions observed in thermodynamic sys-
tems. Phase transitions in average complexity have been
observed in many NP-hard problems like Satisfiabil-

ity [15, 16] or Hamiltonian circuit [17]. Their study
forms the base of an emerging interdisciplinary field of
research that joints computer scientists, mathematicians
and physicists [18, 19]. The transition in the Npp illu-

mailto:stephan.mertens@physik.uni-magdeburg.de

2

minates the interdisciplinary character of the field. Fu
[20] (physicist) mapped partitioning to an infinite-range,
antiferromagnetic spin glass and concluded (incorrectly)
that this model did not have a phase transition. Gent and
Walsh [21] (computer scientists) verified the phase tran-
sition by numerical simulations. They introduced the
control parameter κ and estimated the transition point
close to κc = 0.96. Mertens [22] (physicist) reconsidered
Fu’s spin glass analogy and derived a phase transition

at κc = 1 − log
2

N

2N
+ O(1

N
). Then Borgs, Chayes and

Pittel [23] (mathematicians) took over and established
the phase transition and its characterization rigorously.
The mathematical proofs for the phase transitions are
another exceptional feature of the Npp. For other NP-
hard problems like Satisfiability much less is known
rigorously and the sharpest results have been obtained
by the powerfull, but non-rigorous techniques of statisti-
cal mechanics [24, 25].

It is this combination of algorithmic hardness and ana-
lytic tractability that characterizes the Npp as the “easi-
est hard problem”, a phrase coined by Brian Hayes [4]. In
this contribution we will exploit the easiness of the Npp

to provide an understanding of some of its remarkable
properties.

II. ALGORITHMS AND COMPLEXITY

In view of the NP-hardness of the Npp it is wise to
abandon the idea of an exact solution and to ask for an
approximative but fast heuristic algorithm. An obvious
approach is place the largest number in one of the two
subsets. Then continue to place the largest number of
the remaining numbers in the subset with the smaller to-
tal sum thus far until all numbers are assigned. The idea
behind this greedy heuristics is to keep the discrepancy
small with every decision. The worst that could happen
is that the two subsets are perfectly balanced just before
the last number has to be assigned. This is the motiva-
tion for assigning the numbers in decreasing order, and
it gives the scaling of the result: O(N−1) for real-valued

aj . This is extremely bad compared to O(
√

N 2−N) of
the optimum discrepancy. The time complexity of the
greedy algorithm is given by the time complexity to sort
N numbers, i.e. it is O(N log N). Applied to the set
{aj} = {8, 7, 6, 5, 4} the greedy heuristics misses the per-
fect solution and yields a partition {8, 5, 4} {7, 6} with
discrepancy 4.

The differencing method of Karmarker and Karp [26],
also called the KK heuristics, is another polynomial time
approximation algorithm. The key idea of this algorithm
is to reduce the size of the numbers. This is achieved
by replacing the two largest numbers by the absolute
value of their difference. This differencing operation is
equivalent to commit placing both numbers in different
subsets without actually fixing the subset each will go
in. With each differencing operation the number of num-
bers decreases by one, and the last number is the final

discrepancy. Applied to {8, 7, 6, 5, 4}, the differencing
method yields a discrepancy of 2 that results from the
partition {8, 6} {7, 5, 4}. Note that the reconstruction of
the partition requires some extra bookkeeping that we
did not mention on our brief description of the differenc-
ing method. Again the heuristic algorithm misses the
perfect solution, but the outcome is at least better than
the greedy result. Yakir [13] proved that the result of the
differencing method on random real valued aj ∈ [0, 1] is
O(N−α log N) with a constant α = 0.72. Again this is
much better than the greedy result, yet it is far away
from the optimum. The time complexity of the differenc-
ing method is dominated by the complexity of selecting
the two largest numbers. This is most efficiently done by
sorting the initial list and keeping the order througout all
iterations, leaving us with a time complexity O(N log N).

Both heuristics can be used as a base for an exact algo-
rithm. At each iteration, the greedy algorithm decides to
place a number in the subset with the smaller total sum
so far. The only alternative is to place the number in the
other subset. Exploring both alternatives means search-
ing a binary tree that contains all 2N possible partitions.
The corresponding alternative in the KK heuristics is to
replace the two largest numbers by their sum. Korf [27]
calls the algorithms that explore both alternatives com-

plete greedy and complete differencing algorithm. Fig. 1
shows the search tree of the complete differencing method
for our example {8, 7, 6, 5, 4}.

8 7 6 5 4

1456

4 1 1 11 4 1 9 5 4 21 5 4

13 15 17 115 44 14 4 416 26 4

2

15 6 5 4

4 4 6 6 8 14 16 0 8 10 18 12 20 22 30

FIG. 1: Search tree of the complete differencing algorithm.
Left branch means “replace two largest numbers by their dif-
ference”, right branch means “replace them by their sum”.
With appropriate pruning rules only the colored nodes have
to be visited to find the optimum solution.

Both complete algorithms have exponential time com-
plexity in the worst case, but it is possible to prune parts
of the search tree by simple rules. For the complete dif-
ferencing method these rules are:

1. If less than 5 numbers are left, take the left branch
(i.e. apply the differencing operation).

2. If the largest number in the set set is larger than
or equal to the sum of all the other numbers, stop
branching: the best solution in this subtree is to
place the largest number in one set, all the other
numbers in the other set.

3

3. If a perfect partition has been found, stop the whole
algorithm.

The first rule needs some thought, but it can in fact be
proven that the KK-heuristics always yields the optimum
for N ≤ 4. Similar pruning rules can be added to the
complete greedy method. Fig. 1 shows that the rules
really chop off large parts of the search tree, at least in
our example.

0 10 20 30 40 50 60 70 80 90 100 110 120
N

10
1

10
2

10
3

10
4

10
5

no

de
s

complete differencing

complete greedy

N

0 10 20 30 40 50 60 70 80 90 100 110 120
N

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

. (
pe

rf
ec

t p
ar

tit
io

n)

FIG. 2: Number of nodes visited by the complete greedy
and the complete differencing algorithm. Instances are sets
of random 20-bit integers of cardinality N , each data point
represents an average over 104 instances. The dashed line
indicates the empirical probability that a given instance has
a perfect solution.

The question is how the pruning affects the search in
general and for large instances. Fig. 2 shows the number
of nodes visited by the complete greedy and the complete
differencing algorithm for solving large instances of ran-
dom 20-bit integers. For small values of N , the number
of nodes growth exponentially with N , i.e. the pruning
shows only little effect on the performance. For systems
beyond N = 23 the situation changes drastically: the
number of nodes not only stops increasing with N , it
decreases. Larger problems become easier to solve! Ap-
parently the pruning gets more and more effective as N
increases, especially for the complete differencing algo-
rithm. For N > 80 the latter explores only N nodes of
the search tree, i.e. the very first leaf of the tree repre-
sents the optimum solution, and the algorithm “knows”
that without exploring the rest! This can only mean that
rule 3 from above applies, i.e. the partition generated by
the differencing heuristic must be perfect.

The appearance of perfect partitions is closely related
to the transition in the average complexity, as can be
seen from the probability that a random instance has
a perfect partition: This probability jumps precisely at
the point where the algorithmic complexity changes its
behavior, see Fig. 2. Apparently there is computational

hard regime without perfect partitions and a computa-
tional easy regime where perfect partitions are abundant.

III. PHASE TRANSITION

As we have seen in the preceeding section the average
complexity of algorithms for the random Npp depends
on the presence of perfect partitions. The probability
of perfect solutions is a property of the ensemble of in-
stances and it can be studied independently from algo-
rithms. This is what we do in this section.

A partition A can be encoded by binary variables sj =
±1: sj = +1 if j ∈ A, sj = −1 otherwise. The cost
function then reads E = |D(s)| where

D =

N
∑

i=1

aisi (2)

is the signed discrepancy. An alternative cost function is
H = D2 or

H = −
∑

i,j

Jijsisj with Jij = −aiaj . (3)

H is the Hamiltonian of an infinite range, antiferromag-
netic spin glas, which has been studied by physicists at
least three times [10, 20, 22] within the canonical frame-
work of statistical mechanics. Here we follow another,
very simple approach that has been used recently to an-
alyze the Multiprocessor Scheduling Problem [7].

The signed discrepancy D can be interpreted as the
distance to the origin of a walker in one dimension who
takes steps to the left (sj = −1) or to the right (sj = +1)
with random stepsizes (aj). The average number of walks
that end at D reads

Ω(D) =
∑

{sj}

〈

δ

d −
N

∑

j=1

ajsj

〉

(4)

where 〈·〉 denotes averaging over the random numbers a.

For fixed walk {sj} and large N , the sum
∑N

j=1 ajsj is
Gaussian with mean

〈D〉 = 〈a〉
∑

j

sj =: 〈a〉M (5)

and variance

〈D2〉 − 〈D〉2 = N(〈a2〉 − 〈a〉2). (6)

The sum over {s} is basically an average over all trajec-
tories of our random walk. For large N this average is
dominated by trajectories with “magnetization” M = 0.
Hence the probability of ending the walk at distance D
reads

p(D) =
1

√

2πN 〈a2〉
exp

(

− D2

2N 〈a2〉

)

. (7)

4

Note that our walker walks on a sublattice of Z with
lattice spacing 2: his movements are confined to the even
(odd) numbers for

∑

aj being even (odd). Hence the
average number of walks that end at distance D is given
by

Ω(D) = 2N2p(D) =
2N+1

√

2πN 〈a2〉
exp

(

− D2

2N 〈a2〉

)

. (8)

For the location of the phase transition we can concen-
trate on perfect partitions, i.e. we assume D = 0 and
we assume that the a’s are uniformly distributed κN -bit
integers. From

〈

a2
〉

=
1

3
22κn

(

1 −O(2−κN)
)

(9)

we get

log2 Ω(0) = N(κc − κ) (10)

with

κc = 1 − log2 N

2N
− 1

2N
log2

(π

6

)

. (11)

This is our phase transition: according to (10) we have
an exponential number perfect partitions for κ < κc, and
no perfect partition for κ > κc. Our derivation is a bit
sloppy, of course, but the result agrees with the rigorous
theory of [23].

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
κ

S

N=12
N=15
N=18
N=21
N=24

FIG. 3: Entropy S = log
2
Ω(0) of perfect partitions vs. κ.

Theory (Eq. (10)) compared to numerical enumerations (sym-
bols).

According to (10) we expect the entropy S = log2 Ω(0)
of perfect partitions for fixed but large N to be a linear
function of κ. In fact this can already be observed for
rather small problem sizes, see Fig. 3. Linear extrapola-
tion of the simulation data for log2 Ω(0) gives numerical
values for the transition points κc(N). Again the nu-
merical data for small systems agree very well with the

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
1/N

0.80

0.85

0.90

0.95

1.00

κ
c

Theory

Enumerations

FIG. 4: Numerical data for the transition points κc(N) have
been obtained by linear extrapolation of the data for log

2
Ω(0)

from Fig. 3. The solid line is Eq. (11).

predictions of the asymptotic theory (Fig. 4). The strong
finite size corrections of order log(N)/N lead to the cur-
vature of κc(N) and they are responsible for the incorrect
value κc = 0.96 that Gent and Walsh extrapolated from
their simulations [21].

12 14 16 18 20 22 24 26 28 30 32
N

10
4

10
6

10
8

no

de
s

~2
0.88 N

B=16
B=18
B=20
B=22
B=24

FIG. 5: Partitioning B-bit numbers with the complete greedy
algorithm: number of search nodes visited vs. N . The curves
are averages over 104 random samples, the symbols mark the
values Nc given by Eq. (12). The fitted curve 20.88N shows
that pruning has almost no effect for N < Nc.

The phase transition at κc is a property of the in-
stances. It is by no means clear how this transition affects
the dynamical behavior of search algorithms. Note that
even for κ < κc the fraction of perfect partitions is expo-
nentially small, and finding one of these is non-trivial.

In numerical experiments like the one shown in Fig. 2

5

the number B = κN of bits is usually fixed and N is
varied. Then κc translates into a critical value Nc =
B/κc or

B

Nc

= 1 − log2 Nc

2Nc

− 1

2Nc

log2

(π

6

)

. (12)

For B = 20 this gives Nc = 21.8, in good agreement with
the location of the hardest instances in Fig. 2. Fig. 5
shows that the average time complexity of the complete
greedy algorithm changes its dependence on N precisely
at the values Nc given by (12). It is well justified to
classify the two regimes κ < κc and κ > κc as “easy”
and “hard”, resp..

IV. EASY PHASE

The hallmark of the easy phase is the exponential num-
ber of perfect partitions, but the easy phase is not ho-
mogeneous: the number of perfect partitions increases
with decreasing κ. This phenomenon might yield an in-
teresting structure with regard to algorithms: the perfor-
mance of an algorithm increases as one moves away from
the phase boundary towards smaller values of κ. In fact,
Fig. 2 indicates that complete differencing finds a perfect
partition with its very first descent in the search tree if
κ is small enough. Maybe the easy phase disintegrates
into two phases, one in which complete differencing has
to backtrack, and another one in which the first try hits
a perfect solution?

0 0.1 0.2 0.3 0.4
κ

0

0.2

0.4

0.6

0.8

1

P
ro

b.
 (

K
K

->
pe

rf
ec

t) N=100
N=200
N=300
N=400
N=500

FIG. 6: Probability of the event “Karmarkar-Karp differenc-
ing heuristics yields perfect partition”.

To check this hypothesis we investigate the Karmarkar-
Karp (KK) heuristic solution of the Npp. Remember
that this solution is the first one generated by the com-
plete differencing algorithm. Let Dkk be the discrepancy
of the KK-solution. Our hypothesis then is: There is a

value 0 ≤ κkk ≤ κc such that

lim
N→∞

Prob.(Dkk ≤ 1) =

{

1 κ < κkk

0 κ > κkk
. (13)

Fig. 6 shows the result of a simulation of the KK-
algorithm. In fact there is a sharp transition at a value
κkk, but this value depends on N and seems to go to 0
as N → ∞.

100 200 300 400 500 600
N

0.05

0.10

0.15

0.20

0.25

κkk

FIG. 7: Threshold value κkk below which Karmarkar-Karp
differencing yields perfect solutions. Eq. 16 (solid line) com-
pared to numerical simulations (symbols).

A simple consideration points out how this happens:
We know from the work of Yakir [13] that the KK-
algorithm generates partitions with discrepancy

Dkk = N−α log N (14)

for some constant α > 0. For a perfect partition, all κN
bits of the discrepancy must be zero, or

N−α log N ≤ 2−κN . (15)

This inequality is fulfilled as long as κ ≤ κkk(N) with

κkk(N) = α
log2 N

N log 2
(16)

Fig. 7 shows κkk(N) in comparison with the results from
simulations, where we measured κkk as the value where
the probability of generating a perfect partition is 1/2.
For α we took the value 0.72 reported by Yakir for the
average discrepancy of the KK-solution. Yakir’s proof of
eq. 14 was based on the continuous case κ = ∞, but it is
probably not too hard to extend it to prove (16).

Note that a similar consideration indicates that even
the greedy heuristic eventually yields perfect partitions
for very small values of κ. For the parameter B = 20
used in Fig. 2 we expect the greedy heuristics to generate
perfect partitions for N > 839000.

6

V. HARD PHASE

Fig. 2 shows that in the easy phase complete differ-
encing outperforms complete greedy, and in view of the
exponentially small fraction of perfect partitions both al-
gorithms outperform blind search through all partitions.
Fig. 2 also indicates that complete greedy and complete
differencing are coequal in the hard phase. In fact, in the
hard phase both are coequal to blind random search, as
we will see in this section.

A first hint on the hardness of the Npp in its hard
phase was provided by the random cost approximation to
the Npp [28]. Here the original problem is replaced by the
problem to locate the minimum number in an unsorted
list of 2N−1 independent random, positive numbers E
drawn from the density

p(E) =
2

√

2πN 〈a2〉
exp

(

− E2

2N 〈a2〉

)

(E ≥ 0).

(17)
This is the probability density of discrepancy in the Npp,
confer (7), but of course the discrepancies in the Npp are
not independent random variables. The approximation
of independence on other hand allows the calculation of
the statistics of the optimal and near optimal solutions.
Consider the continuous case, i.e. κ → ∞. Then the
numbers E are real, positive numbers drawn from (17).
Let Ek denote the k-th lowest of these numbers. The
probability density ρ1 of the minimum E1 can easily be
calculated:

ρ1(E1) = 2N−1 ·p(E1) ·
(

1−
∫ E1

0

p(E′)dE′
)2N−1−1

(18)

E1 must be small to get a finite right-hand side in the
large N limit. Hence we may write

ρ1(E1) ≈ 2N−1 · p(0) ·
(

1 − E1p(0)
)2N−1−1

≈ 2N−1 · p(0) · e−2N−1p(0)E1 .

This means that the scaled minimum,

ε1 = 2N−1 · p(0) · E1 (19)

is an exponential random variable,

ρ1(ε) = e−ε (ε > 0) (20)

Along similar lines [29] one can show that the density ρk

of the k-th lowest scaled number is

ρk(ε) =
εk−1

(k − 1)!
· e−ε k = 2, 3, (21)

Figs. 8 and 9 compare Eqs. (20) and (21) with the prob-
ability density of the scaled optimal and near-optimal
discrepancies in the Npp. The agreement is amazing,
even for small values of N . In fact (20) and (21) have

0 1 2 3 4
ε

0.0

0.2

0.4

0.6

0.8

1.0

ρ1

N=16
N=20
N=24
N=28

FIG. 8: Probability density of the scaled optimum discrep-
ancy in the hard phase. Symbols: Numerical simulations.
Solid line: prediction by the random cost approximation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ε

0

0.1

0.2

0.3

0.4

ρk

k=2
k=5
k=10

FIG. 9: Probability densities of the k-th best partition in
the hard phase. Symbols: Numerical simulations for N = 24.
Solid lines: predictions by the random cost approximation.

been established as the asymptotic probability measure
for the optmimum discrepancies—rigorously and without
the assumption of independence [23].

The fact that the random cost approximation gives
the accurate statistics of the optimum discrepancies is no
accident, of course. There is a certain degree of statistical
independence among the costs in the NPP. This can be
seen from the joint probability

p(E, E′) = 2−2N
∑

{sj ,s′

j
}

〈

δ(E − |
∑

j

ajsj |) δ(E′ − |
∑

j

ajs
′
j |)

〉

(22)
of finding discrepancies E and E ′ in one instance of an
Npp. In [30] it is shown that this probability factorizes,
i.e. p(E, E′) = p(E)p(E′) for discrepancies E and E ′ that
are smaller than O(N). To depict the uncorrelatedness of
the small discrepancies consider a partition in the con-
tinuous problem with very low discrepancy E of order

7

O(
√

N 2−N). Any single local move sj 7→ s′j = −sj

increases E by something O(N−1), and it takes a lot
of moves to compensate this to get another discrepancy
E′ = O(

√
N 2−N). The corresponding partitions s and

s′ typically have an overlap 0, and this leads to the fac-
torization of p(E, E ′).

The random cost problem is an algorithmic nightmare.
No smart heuristic is better than stupid random or se-
quential search, and this is the reason why there are
no good heuristics in the hard phase of the Npp, and
why complete algorithms cannot really take advantage
of the pruning rules. But there are differences in the
quality of heuristic solutions, remember the greedy result
(O(N−1)) and the KK-heuristic (O(N−α log N)). How
can these differences arise if the Npp is essentially a ran-
dom cost problem? The answer is that both algorithms
exploit the correlations among the large discrepancies to
stay away from the bad partitions, and the differencing
method is much more efficient at this. The correlations
between large discrepancy configurations are also respon-
sible for the fact that the complete barrier tree of the Npp

looks different from the complete barrier tree of the pure
random cost problem [31].

Complete algorithms differ only in the sequence in
which they explore the partitions. In the sequence gen-
erated by complete differencing the true optimum might
appear earlier than in the sequence generated by com-
plete greedy, but if the random cost picture is cor-
rect, the location of the optimum is random in any
prescribed sequence. This has been checked for ex-
ample for another smart algorithm proposed by Korf
[27]. Korf suggested to reorder the leafs of the search
tree of the complete differencing method according to
their number of “right turns” (violations of the differ-
encing heuristics) in their pathes, starting with those
leafs that deviate less from the KK-heuristic. In our
example from Fig. 1 the leafs would be visited in order
(2, 4, 4, 6, 0, 6, 8, 14, 8, 10, 12, 16, 18, 20, 22, 30), and in fact
the perfect solution appears earlier than in the sequence
shown in Fig. 1. Numerical simulation however revealed
that in the hard phase the position of the optimum in
the sequence generated by this algorithm is completely
random, as predicted by the random cost problem [30].

Apparently there is no way to overcome the random
cost nature of the Npp in the hard phase, or as Brian
Hayes put it, “When the Npp is hard, it’s very hard.”

VI. CONCLUSIONS

We have seen that random Npp has a phase transition
in average complexity, and that this phase transition goes

hand in hand with a transition in probability of perfect
solutions. The control parameter κ of both transitions is
the ratio of the number of bits in the aj ’s and the num-
ber N of variables, and κc = 1− log2(N)/2N +O(N−1)
is the critical value that separates the hard (κ > κc)
from the easy (κ < κc) phase. Much more can be said
about the phase transition, for example about the width
of the transition window and the probability of perfect
solutions inside that window. Another proven fact is the
uniqueness of the solution in the hard phase. All this
(and much more) can be found in the paper of Borgs,
Chayes and Pittel [23]. Their work answers most of the
open questions on random Npp that are not related to al-
gorithms. The major open problem is to put the random
cost approximation on rigorous grounds and to clarify its
relevance for algorithms. From a practical point of view
it would be very nice to have a polynomial time algorithm
that yields better results than the differencing method.
After all, there is much room between O(N−α log N) and

O(
√

N 2−N).

The Npp as shown here can be generalized and modi-
fied in various directions. An obvious generalization is to
partition the numbers into q ≤ 2 subsets. This is called
the Multiprocessor Scheduling Problem, and in
physics parlance this corresponds to a Potts spin glas or
to a walk with random stepszies in q−1 dimensions. The
latter approach has been used to analyze an “easy-hard”
phase transition in Multiprocessor Scheduling [7].

Another variant is the constrained Npp where the car-
dinality of the subsets is fixed. This is necessary for
some appications like choosing up sides in a ball game
[4], where both teams need to have the same number of
players. The cardinality difference of the subsets is a con-
trol parameter that triggers another phase transition in
computational complexity, giving rise to a 2-dimensional
phase diagram [32].

Acknowledgments

Discussions with Heiko Bauke are gratefully acknowl-
edged. Part of the numerical simulations have been done
on our Beowulf cluster Tina[33].

[1] E. Coffman and G. S. Lueker, Probabilistic Analysis

of Packing and Partitioning Algorithms (John Wiley &
Sons, New York, 1991).

[2] L.-H. Tsai, SIAM J. Comput. 21, 59 (1992).

8

[3] R. C. Merkle and M. E. Hellman, IEEE Transactions on
Information Theory 24, 525 (1978).

[4] B. Hayes, American Scientist 90, 113 (2002).
[5] M. R. Garey and D. S. Johnson, Computers and In-

tractability. A Guide to the Theory of NP-Completeness

(W.H. Freeman, New York, 1997).
[6] S. Mertens, Computing in Science and Engineering 4, 31

(2002).
[7] H. Bauke, S. Mertens, and A. Engel, Phys. Rev. Lett.

90, 158701 (2003).
[8] N. Karmarkar, R. M. Karp, G. S. Lueker, and A. M.

Odlyzko, J. Appl. Prob. 23, 626 (1986).
[9] G. S. Lueker, Random Structures and Algorithms 12, 51

(1998).
[10] F. Ferreira and J. Fontanari, J. Phys. A 31, 3417 (1998).
[11] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and

C. Schevron, Operations Research 39, 378 (1991).
[12] W. Ruml, J. Ngo, J. Marks, and S. Shieber, Journal of

Optimization Theory and Applications 89, 251 (1996).
[13] B. Yakir, Math. Oper. Res. 21, 85 (1996).
[14] G. Reinelt, The Travelling Salesman. Computational So-

lutions for TSP Applications, vol. 840 of Lecture Notes

in Computer Science (Springer-Verlag, Berlin Heidelberg
New York, 1994).

[15] S. Kirkpatrick and B. Selman, Science 264, 1297 (1994).
[16] B. Hayes, American Scientist 85, 108 (1997).
[17] P. Cheeseman, B. Kanefsky, and W. M. Taylor, in Proc.

of IJCAI-91, edited by J. Mylopoulos and R. Rediter
(Morgan Kaufmann, San Mateo, CA, 1991), pp. 331–337.

[18] O. Dubois, R. Monasson, B. Selman, and R. Zecchina,
eds., Phase Transitions in Combinatorial Problems, vol.
265 of Theor. Comp. Sci. (2001).

[19] M. Mézard, Science 301, 1685 (2003).

[20] Y. Fu, in Lectures in the Sciences of Complexity, edited
by D. L. Stein (Addison-Wesley Publishing Company,
Reading, Massachusetts, 1989), vol. 1, pp. 815–826.

[21] I. P. Gent and T. Walsh, in Proc. of ECAI-96, edited by
W. Wahlster (John Wiley & Sons, New York, 1996), pp.
170–174.

[22] S. Mertens, Phys. Rev. Lett. 81, 4281 (1998).
[23] C. Borgs, J. Chayes, and B. Pittel, Rand. Struct. Alg.

19, 247 (2001).
[24] M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126

(2002).
[25] S. Mertens, M. Mézard, and R. Zecchina, Thresh-

old values of random k-SAT from the cavity method,
http://arXiv.org/abs/cs.CC/0309020 .

[26] N. Karmarkar and R. M. Karp, Tech. Rep. UCB/CSD
81/113, Computer Science Division, University of Cali-
fornia, Berkeley (1982).

[27] R. E. Korf, Artificial Intelligence 106, 181 (1998).
[28] S. Mertens, Phys. Rev. Lett. 84, 1347 (2000).
[29] J. Galambos, The Asymptotic Theory of Extreme Order

Statistics (Robert E. Krieger Publishing Co., Malabar,
Florida, 1987).

[30] S. Mertens, Theor. Comp. Sci. 265, 79 (2001).
[31] P. F. Stadler, W. Hordijk, and J. F. Fontanari, Phys.

Rev. E 67, 056701 (2003).
[32] C. Borgs, J. Chayes, S. Mertens, and B. Pit-

tel, Phase diagram for the constrained in-

teger partitioning problem (2003), URL
http://arxiv.org/abs/cond-mat/0302536 .

[33] Tina, tina is a 156-CPU selfmade Beowulf clus-
ter at Otto-von-Guericke University, Magdeburg. See
http://tina.nat.uni-magdeburg.de .

http://arXiv.org/abs/cs.CC/0309020
http://arxiv.org/abs/cond-mat/0302536
http://tina.nat.uni-magdeburg.de

