
Black hole heat engine
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Two black holes can merge to create a bigger black hole, thus increasing the entropy of the
universe. Alternatively, they can be used as two heat reservoirs from which work can be extracted.
We discuss a process during which two black holes are transformed into one while the total
entropy is kept as constant. The resulting black hole has a smaller mass than the total mass of the
input black holes and the mass difference is converted into work. Although the process will
probably not be used within the next 1011 yr for energy production, we can speculate that it might
be an energy source for those who might inhabit our universe after that. We discuss the basic
thermodynamics of the proposed system.VC 2012 American Association of Physics Teachers.
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I. INTRODUCTION

Renewable energy resources will not be renewable for-
ever. Even the Sun as well as all the stars will ultimately
burn all their nucleosynthetic fuel. Will life in any form
be possible after that? Instead of global warming, future
inhabitants of our expanding universe will face universal
cooling. In an almost empty universe with just back-
ground radiation of decreasing temperature and with
sparsely scattered remnants of dead stars and galaxies,
what could serve as an energy source to continue anything
similar to life? And where can the waste entropy be
dumped to keep organized structures possible? Questions
such as these have been put forward by Frautschi1 and by
Krauss and Starkman.2 Even though the prognosis is not
very optimistic for times beyond !1050–10100 yr, the
good news is that before all the black holes evaporate by
Hawking radiation, an interesting option is found by
merging black holes. The time for exploiting this resource
will exceed by many orders of magnitude the present age
of our universe.

As suggested by Bekenstein,3 a black hole has entropy
which is proportional to the square of its mass,

SBH ¼ 4pk
M

mP

! "2

; (1)

where k¼ 1.38# 10$23 J=K is the Boltzmann constant, M is
the mass of the black hole, mP ¼

ffiffiffiffiffiffiffiffiffiffiffi
!hc=G

p
! 2:2# 10$8 kg

is the Planck mass, G is the gravitation constant, c is the
speed of light, and !h is the reduced Planck constant. When a
star collapses to form a black hole, a huge amount of entropy
is produced. Because the entropy is proportional to M2,
merging two black holes of masses M1 and M2 into one of
mass M1þM2 leads to a total entropy increase proportional
to 2M1M2. To put the entropy increase in perspective, we
note that for a human to keep his or her metabolism for a
lifetime increases the entropy of the universe by about 109

J=K, mostly by converting the chemical energy of food into
thermal energy.4 The Earth during its existence has contrib-
uted to the entropy production by about 1032 J=K, mostly by
converting each incoming solar photon into &17 infrared
photons radiated into space.5 The Sun has contributed an
entropy increase of about 1040 J=K, which came into being
by producing about 5# 106 photons emitted into space per
nucleon subject to nucleosynthesis.6 If the solar mass is

squeezed to become a black hole, the entropy would increase
to 1054 J=K, that is, by fourteen orders of magnitude. Even if
the Sun consumed all its nuclear fuel in the most efficient
way and converted all its hydrogen into iron, dispensing its
energy by radiating visible light, the entropy produced would
be just &3# 1041 J=K, which is negligible compared with
the entropy increase of the black hole formation. If two
solar-mass black holes merge, the total entropy increases
by twice the entropy of a single solar-mass black hole
&1054 J=K.
Disposing of entropy is essential for living organisms.7 If

the organism has to keep its entropy low, then the entropy
must increase somewhere else in the universe. Feeding
black holes seems to be a very efficient way to get rid of
excess entropy. References 1 and 2 deal with the question
of how the possibilities for dumping excess entropy pro-
duced by maintaining life in whatever form could continue
in the aging universe. Although the entropy bookkeeping is
clear, we are left to speculate by what mechanism the sug-
gested “black hole amalgamation”1 could be used for any-
thing useful.
In this paper, we discuss a method to produce work by

running a heat engine between two black holes that serve as
thermal reservoirs. Working with Carnot efficiency, the two
black holes can ultimately merge into one, keeping the total
entropy unchanged. The resulting black hole thus must have
a smaller mass than the total mass of the input black holes.
The difference corresponds to the extracted work. As we will
show, by merging two black holes with masses M1 and M2,
we can in principle extract up to ðM1 þM2 $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þM2
2

p
Þc2

of useful work.
Black hole thermodynamics has been discussed exten-

sively since the seminal papers by Bekenstein3 and Hawk-
ing.8,9 However, not much attention has been paid to heat
engine methods. A model suggested by Kaburaki and Oka-
moto10 uses a Kerr black hole as the working medium in a
Carnot-like engine running between two reservoirs formed
by boxes with radiation. Recently Deng and Gao proposed a
Carnot engine with radiation as the working fluid and a black
hole as the cold reservoir.11

In this paper, we discuss a simple model suitable for
undergraduate courses. It combines the basic ideas of ther-
modynamics and black hole physics, can serve as an excur-
sion into times far exceeding present cosmological scales,
and can give students a flavor of the energy problem viewed
as “sub specie aeternitatis,” or close to that.
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II. HEAT RESERVOIR: BLACK HOLE AND
RADIATION IN A BOX

We consider a simple system consisting of a Schwarzs-
child black hole (nonrotating and uncharged) inside a box
filled with radiation. Let the inside walls of the box be per-
fectly reflecting, thus isolating the interior from the outside
world so that the total energy in the box is constant. In this
way, the black hole is in thermodynamic equilibrium with
the radiation.

The mechanism of black hole radiation has been described
by Hawking8,9 and the composition of the radiation has been
discussed by Page.12 For simplicity, we assume a model
where the radiation is entirely due to photons. The real com-
position of the radiation would influence the numerical val-
ues of the parameters, but not the scaling of the relevant
quantities.

The total energy of the system is

Etot ¼ Mc2 þ aVT4; (2)

where the first term is the black hole energy and second term
is the energy of the radiation with

a ¼ p2k4

15c3!h3
; (3)

V is the volume of the box and T is the radiation temperature.
The black hole temperature is (see, for example, Ref. 13)

TBH ¼ @EBH

@SBH
¼ !hc3

8pkGM
: (4)

Note that the Schwarzschild radius RS of a black hole of
temperature TBH is similar in size to the typical wavelength
of thermal radiation at the same temperature,

RS ¼
2GM

c2
¼ !hc

4pkTBH
: (5)

The entropy of the combined system is

Stot ¼ SBH þ Srad; (6)

with the radiation entropy

Srad ¼
4

3
aVT3: (7)

By using Eq. (2), we can express the radiation temperature
in terms of the total energy and the black hole mass such that
the total entropy is a function ofM

Stot ¼ k
4pG
!hc

M2 þ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffi
p2Vc3

15!h3
4

s

ðMtot $MÞ3=4
2

4

3

5; (8)

with Mtot : Etot=c
2 (see Fig. 1). The equilibrium condition

corresponds to the extrema of the total entropy. A local max-
imum is at the boundary M¼ 0 (no black hole, all the energy
is in radiation). We set the partial derivative equal to zero,

@Stot
@M

! "

V;Etot

¼ 0; (9)

and find the condition for other local extrema,

M4ðMtot $MÞ ¼ p2c7!hV

15ð8pGÞ4
: (10)

Equation (10) has real solutions between 0 and Mtot only
for sufficiently small V,

V ) V* ¼ 2203p2G4M5
tot

54c7!h
: (11)

For larger volumes the black hole is unstable and eventu-
ally evaporates into radiation. For volumes V<V*, there are
two local extrema corresponding to the black hole tempera-
ture equaling the radiation temperature. The equilibrium for
the smaller value ofM is unstable (Stot has a local minimum).
In this case the black hole would either completely evaporate
resulting in the radiation-only case, or would grow and
absorb radiation and end up in the other, stable equilibrium
with the larger value ofM.
The condition (11) defines the length scale of the box in

which the black hole can be kept in thermal equilibrium,

‘box . 40‘P
M

mp

! "5=3

! 20RS
M

mp

! "2=3

; (12)

where ‘P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G!h=c3

p
!1:6# 10$35 m is the Planck length.

The dynamics of black holes approaching thermal equilib-
rium in a box with radiation has been studied by Custodio
and Horvath.14

In the following, we choose the system in stable equilib-
rium to be the thermal reservoir for the Carnot process. For
simplicity, we will assume that the box is always so small
that most of the energy is in the black hole. For a sufficiently
small volume the fraction of energy in the radiation
is& (44=55)(V=V*)! 0.08V=V*. Equation (12) implies that
for black holes with a mass much larger than the Planck
mass the box can also be made sufficiently large so that on
its surface the gravitational red shift [! RS=(2‘)] is negligible

Fig. 1. Dependence of the entropy Stot of a system composed of a black hole
and radiation inside a box with insulating walls on the mass of the black
hole M, Eq. (8). The various lines correspond to varying total energies while
the volume of the box is fixed. The dotted line represents the boundary
M¼Mtot and the dashed line joins points corresponding to unstable equilib-
rium. The thick full line joins points of stable (or metastable, if states of
pure radiation with M¼ 0 have more entropy) equilibrium with the black
hole dominating the system.
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(‘ is the distance between the black hole center and a point
on the box surface).

III. CARNOT PROCESS

The method is shown in Fig. 2. There are two boxes, each
with radiation and a black hole in stable equilibrium. Each
box serves as a heat reservoir, with its temperature deter-
mined by the mass of the black hole. Between the boxes
there is a cylinder with a movable piston. The volume of the
cylinder is much smaller than the volume of the reservoirs.
The cylinder walls as well as the piston perfectly reflect the
radiation. The cylinder can either be completely isolated, or
can be open to one of the reservoirs. The pV diagram of the
cycle is shown in Fig. 3.

The cycle starts with the piston close to the hot reservoir,
and the volume of the working medium is zero.

(a) In the first step, the cylinder is open to the hot reservoir
and the piston moves to increase the volume of the working
medium to Va. The process is isothermal, and, because the
radiation pressure p¼ aT4=3 is uniquely determined by the
temperature, it is also isobaric. The work done by the system
during this step is

Wa ¼ p1Va ¼
1

3
aT4

1Va; (13)

where p1 and T1 refer to the pressure and temperature of the
hot reservoir. The energy extracted from the reservoir is

Qa ¼ T1DSa ¼
4

3
aVaT

4
1 : (14)

(b) In the second step, the cylinder is isolated and the radi-
ation expands adiabatically by pushing the piston to volume
Vb, cooling to the temperature T2. Because the radiation en-
tropy given by Eq. (7) remains constant, the resulting volume
is Vb¼Va(T1=T2)

3, and the work done by the system in this
step is

Wb ¼ aT4
1Va 1$ T2

T1

! "
: (15)

(c) In the third step, the cylinder is opened to the cold res-
ervoir and the radiation is isothermally pushed out. Because
the radiation is pushed to the region with nonzero pressure,
work must be performed on the system. The work is

Wc ¼ $p2Vb ¼ $ 1

3
aT3

1T2Va; (16)

and the energy transported to the cold reservoir is

Qc ¼ T2DSc ¼
4

3
aVbT

4
2 ¼ 4

3
aVaT

3
1T2: (17)

(d) In the last step, the piston is carried through the empty
cylinder to its initial position. No working medium is
involved, so that no energy exchange or work occurs. The
net work in one cycle is therefore,

W ¼ Wa þWb þWc (18a)

¼ 4

3
aVaT

3
1ðT1 $ T2Þ (18b)

¼ Qa $ Qc: (18c)

As can be checked, the Carnot relations are satisfied,

Qa

Qc
¼ T1

T2
(19)

with the efficiency g

g + W

Qa
¼ 1$ T2

T1
: (20)

Fig. 2. A big black hole and cold radiation are in the left box and a small
black hole and hot radiation are in the right box. (a) Radiation from the hot
reservoir enters the cylinder and pushes the piston, so that the radiation in
the cylinder expands isothermally. (b) The cylinder is isolated and the radia-
tion expands adiabatically by pushing the piston and cooling to the tempera-
ture of the cold reservoir. (c) The cold radiation is pushed out of the cylinder
isothermally into the cold reservoir.

Fig. 3. A pV diagram of the cycle. The process consists of (a) isothermal
(and isobaric) expansion, (b) adiabatic expansion, and (c) isothermal
compression.
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The radiation-like reservoirs and working fluids can be used
for many other types of Carnot cycles, for example, for a
cycle producing work in the form of maser radiation.15

IV. ENERGY EXTRACTION

Section III considered a single cycle during which the res-
ervoirs were not significantly changed. However, because in
each cycle energy is extracted from the hotter reservoir and
deposited to the cooler, the properties of the reservoir change
with time. This change can be expressed by Eq. (19) with
Qa¼$dM1c

2 and Qc¼ dM2c
2, which means that the energy

transport is compensated by the decrease or increase of the
black hole mass to find a new equilibrium with the radiation.
Thus, we obtain

dM1

dM2
¼ $ T1

T2
: (21)

Because for black holes T! 1=M, we obtain

M1dM1 ¼ $M2dM2; (22)

with the solution

M2
1 þM2

2 ¼ M2
1;0 þM2

2;0; (23)

where M1,0 and M2,0 are the initial masses of the black holes.
Note that due to the entropy relation (1), we can find this
result directly by observing that during the reversible proc-
esses the total entropy does not change.

During this process the hotter reservoir loses mass and
becomes hotter and the colder reservoir gains mass and
becomes colder. This behavior is counterintuitive because
typically the temperatures of two bodies in thermal contact
converge. However, because a black hole has a negative heat
capacity, its temperature increases while energy is being
extracted.13

The black hole of the hot reservoir ultimately disappears,
leaving the cold black hole with the final mass

Mf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1;0 þM2
2;0

q
: (24)

The total work extracted during the entire process is
equivalent to the decrease of the mass,

Wtot ¼ M1;0 þM2;0 $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1;0 þM2
2;0

q$ %
c2: (25)

We illustrate this situation on the energy-entropy diagram
in Fig. 4. The gray area represents the available states of a
system consisting of black holes. The boundary S ! E2 rep-
resents states with a single black hole, that is, equilibrium
states maximizing entropy for the given energy. Starting
from nonequilibrium state A of several (two or more) black
holes, equilibrium can be reached by many different paths.
Path AB1 corresponds to merging the black holes while
keeping the energy fixed so that no work is extracted and the
resulting state maximizes entropy with the available mass.
Path AB2 represents a collision of two black holes: a single
black hole is produced and part of the energy is carried away
by the gravitational waves. (According to Ref. 16 this energy
is in the range of 10$3–10$2 of the rest energy of the input
black holes.) Path AB4 corresponds to the reversible process

described in this section for which the entropy is unchanged
and the maximum possible work is extracted. Path AB3 rep-
resents a slightly more realistic version of this process,
because due to imperfections and irreversibilities, the en-
tropy increases and less work is gained.

V. POWER

The Carnot cycle is idealized because it assumes only the
reversible processes, which are infinitely slow. In real proc-
esses a compromise must be reached between the require-
ments for the maximum efficiency and the maximum power.
In the black hole process we have discussed, the power of
the engine is limited by the rate at which the heat source can
yield and the heat sink can absorb energy, which is given by
the radiation power of the black holes (assuming that black
holes emit only light17),

PBH ¼ 4pR2
SrT

4 ¼ p
240

ðkTÞ2

!h
; (26)

where r ¼ ac=4 ¼ p2k4=ð60c2!h3Þ is the Stefan-Boltzmann
constant. The power of the engine is the difference between
the power of the heat source (energy released per second)
and the power of the heat sink (energy absorbed per second),

P ¼ PH $ PC; (27)

where the ratio of these powers is given by the Carnot relation

PH

PC
¼ T1

T2
: (28)

To stay in thermal equilibrium, energy can only be released
much slower from the hot reservoir than the black hole

Fig. 4. Energy and entropy of a system of black holes. The gray area corre-
sponds to nonequilibrium states with several black holes in the system, and
the boundary S ! E2 represents equilibrium states with maximum entropy.
A system in nonequilibrium state A can attain equilibrium by several paths.
A difference in the E-coordinate represents the work gained from the
system.
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radiates it, and the same holds also for the absorption of the
cold reservoir. Therefore, we have the conditions

PH , pk2T2
1

240!h
; (29)

PC , pk2T2
2

240!h
; (30)

from which we find

P , p
240

k2T2ðT1 $ T2Þ
!h

: (31)

To obtain a feeling for the numbers, we consider the colder
black hole with the solar mass M2¼ 2# 1030 kg, and T2¼ 60
nK, and the hotter one with the temperature of the solar cen-
ter T1¼ 1.6# 107 K and M1¼ 7.8# 1015 kg. The output
power is smaller than 10$14 W. Although the energy avail-
able in this system is& 7# 1032 J, it would take about 1039

yr, that is, 1029 times the age of the universe to extract it.
These estimates suggest that at present such an energy

source would be useless in practice. However, at later stages
of the universe, in a much colder environment when the flow
of life would be at a much slower pace, methods like the one
we have suggested might be a solution to the energy
problem.

VI. EXTERNAL RADIATION

So far we have not considered the role of external radia-
tion outside the boxes and the cylinder. If the universe out-
side the system is empty, we do not have to bother with
pumping the waste radiation into the big black hole.
Actually, the empty universe can be used as the cold reser-
voir at T2¼ 0, and we can use each black hole as a heat
source and produce work by expanding their Hawking radia-
tion. In the ideal case the extractable work is equal to the
total energy of the black holes.

The situation is different in the presence of background
radiation. Nevertheless, if the background radiation is colder
than any of the black holes, it may still be more suitable to
push the waste photons to the colder space rather than to the
warmer black hole which would necessitate overcoming the
higher pressure of the heat sink radiation. Moreover, com-
pared with the black hole, space as the heat sink can absorb
waste energy at an unlimited rate. The power of the engine is
then only limited by the power of the hot black hole,

P , p
240

k2T1ðT1 $ T2Þ
!h

: (32)

If a black hole is allowed to completely evaporate while
running a Carnot engine, we can extract total work

W ¼ M0c
2 1$ T2

2T1;0

! "
; (33)

where M0 is the initial black hole mass and T1,0 is the corre-
sponding temperature given by Eq. (4). Therefore, if the
black hole and the background radiation start at the same
temperature, we can still obtain M0c

2=2 of useful work by
vaporizing the black hole. Even if the black hole is colder
than the background radiation (but not colder than T2=2) and

we have to initially invest some work to pump the energy
out of it, we can obtain positive net work.
If the space is filled with thermal background radiation

hotter than the black holes, we can use the radiation as the
hot reservoir and deposit the waste energy into the black
holes. This method resembles the Geroch model discussed
by Bekenstein3 and studied in more detail by Deng and
Gao,11 who proposed its reversible version. Their model
assumes lowering a box filled with thermal radiation to the
vicinity of the black hole horizon and releasing its content
there.
In this case the power is limited by the rate with which the

hole can absorb radiation at the same temperature as the hole
itself. Thus, if the radiation has temperature T1 and the black
hole has temperature T2, the power is limited by Eq. (31).
For T2 , T1, the power is proportional to the black hole
temperature, P ! T2 ! 1=M. Because the rate of mass
increase is limited by T2

2 / M$2, we can solve the relation
dM=dt ! 1=M2 as M ! t1=3, which leads to P ! t$1=3.
Thus, the work increases with time because W! t2=3. There-
fore, the extractable work would be unlimited, provided that
the background radiation stays at a constant temperature.

VII. BLACK HOLE ECONOMY

If we have two black holes, what would be the best way to
use them? We could combine them to gain useful work and
create a bigger hole. Or, we could evaporate both of them to
accomplish some work and produce radiation. The latter
option would perform the work faster, but in the end there
would be no black hole left. Taking into account that thermal
radiation is the ultimate waste, the former option is environ-
mentally friendlier. In a sense, it means gaining energy by
cleaning the mess out of the universe and concentrating it in
the black hole.
For longer term investments, we might prefer growing

black holes as condensed energy supplies. While growing
the holes, we can also extract useful work, but at much
slower pace than with evaporating the holes. But, provided
that the expansion of the universe continues, and the back-
ground radiation cools down, all the black holes will ulti-
mately be hotter than the background radiation and no more
work can be obtained by feeding the background radiation to
the holes. Merging black holes or getting energy out of them
and radiating the waste energy to empty space would be the
only source of useful energy available. A reasonable strategy
could be having a portfolio of black holes of various sizes,
which would give us the option of using small holes for fast
energy extraction and big holes as large energy supplies for
later use. Careless individuals would collide their black holes
to produce gravitational waves for fun or let small holes
explode as fireworks, which would be wasting precious
resources. Rentiers who like regular energy income might
prefer having their N holes with masses distributed as n1=3,
with n¼ 1, 2,…,N (following from the black hole evapora-
tion lifetime !M3).
The black hole economy is expected to end within about

10106 yr when even the galaxy size black holes will
evaporate.1

VIII. DISCUSSION AND CONCLUSION

Previous models that used black holes as a heat sink of
heat engines3,11 moved a box with radiation to the black hole
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horizon where the radiation was released. This model could
cause some difficulties for students seeking to understand the
essential parts of the model and raises questions such as:
How can we control the box near the horizon if time there
flows much more slowly? How can the radiation in a small
box near a big hole be brought to thermal equilibrium with
the hole if the wavelength of such radiation is comparable to
the Schwarzschild diameter? Our approach is based on build-
ing heat reservoirs as combined systems of a black hole and
radiation in isolated boxes, which leads to a straightforward
heat exchange between the reservoirs and the engine.

In our method, the reservoir has simple properties provided
that the size of the box is suitably chosen; that is, it should be
sufficiently small so that the heat capacity is dominated by
that of the black hole and sufficiently large so that effects
such as gravitational red shifts can be neglected at the box
opening. The heat exchange between the reservoir and the
engines must be sufficiently slow so that the reservoir has
time to reach thermal equilibrium via the interaction of the
black hole with the field. The size condition can be satisfied
if the mass of the black hole is much larger than the Planck
mass, which holds for most of the lifetime of the black hole.
After a long operation of the Carnot engine the size require-
ments could change. For example, the black hole inside the
hot reservoir would become so small that a smaller box is
necessary for the system to remain stable (see Fig. 1 and fol-
low the lines from top to bottom). This adjustment could be
done without changing the basic properties of the model,
namely, not affecting the reversibility. We could, for exam-
ple, insert a partition into the box, leaving the black hole in
one part with the other part containing only the radiation. The
radiation can expand adiabatically, doing work and decreas-
ing the temperature to that of the cold reservoir into which it
will be finally deposited. The part of the box with the black
hole is then used as the size-adjusted reservoir. This simple
method breaks down only at the terminal stage when the
mass of the hot black hole approaches the Planck mass, and
the stability condition requires such a small box that the grav-
itational effects at the box walls would become important.

The model assumes various problems can be solved. For
example, the boxes should keep the radiation under adiabatic
conditions for times longer than the present age of the uni-
verse and not thermalize themselves (because such thermal-
ization would imply that the outer wall of the box would be
at the same temperature as the interior, and the system would
loose energy by thermal radiation). Their walls should reflect
perfectly all the radiation emitted from the black hole: that
is, not only the electromagnetic field but also neutrinos and
gravitons that are natural parts of Hawking radiation.12 The
walls must resist extreme pressures if the mass of the black
hole becomes relatively small. In the example of Sec. V the
black hole of mass &1015 kg was kept in a container with
radiation whose pressure is comparable to that of the solar
core. Even the most sophisticated material made of atoms
would fail if protons are unstable on time scales required for
the processes—perhaps 1034 yr.1 More sophisticated kinds of
materials would be needed in such a case.

Another problem would be keeping the black holes sep-
arated, resisting their gravitational attraction. A system in
which black holes orbit around each other would radiate
gravitational waves, and thus loose energy. In principle,
the gravitational waves can be collected as useful work
which could be reused for keeping the system in their
proper orbits. These problems are far beyond the scope
of this paper, and we happily leave them for future
generations.
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